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GENERAL INTRODUCTION 

The research in each part is related in that it all discusses the development of a 

palladium-based synthetic method. The primary focus of Part One is the development of 

an improved palladium-catalyzed procedure for allylic aiylation of cyclic alkenes. 

Existing methods for this synthetic transformation have a variety of shortcomings, one of 

which is the incompatibility of the reaction conditions with certain organic functional 

groups. The improved procedure discussed in Part One eliminates this difficulty, and the 

desired cross-coupled products are afforded in high yields. 

The focus of Part Two is the use of the improved procedure in a 3-step synthesis of a 

number of franj-2,5-diaryltetrahydrofurans, known to be potent inhibitors of platelet 

activating factor. Previous processes for synthesizing these valuable compounds are 

lengthy and the biologically inactive cis isomer is also formed. The process discussed in 

this part employs, in the first step, procedure C, followed by procedure B and 

subsequent hydrogénation to generate the desired tetrahydrofiiran derivatives. 

The focus of Part Three is on the development of a palladium-catalyzed 

intermolecular vinylation of cyclic alkenes to afford 1,4-dienes. A number of different 

vinylic iodides containing electron-donating and withdrawing groups were examined. 

Three different palladium procedures, as well as a variety of cyclic alkenes, have been 

explored in this reaction. The scope and limitations of this synthetic transformation have 

been determined and will be discussed. 

In the final part, the reaction conditions employed in all three previous parts have 

been employed in the intramolecular vinylation of cyclic alkenes. The purpose again is to 

determine the scope and limitations of these procedures for making a variety of carbo-

and heterocycles. 
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PART I. AN IMPROVED PROCEDURE FOR PALLADIUM-CATALYZED 

ARYLATION OF CYCLIC ALKENES 
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INTRODUCTION 

Within the last three decades, many advances have been made in the area of organo-

metallic chemistry as applied to organic synthesis. Organopalladium chemistry is one such 

example as determined by the vast number of publications. There are basically three 

reasons why Pd-based methodologies have been so widely explored. First, these 

palladium-based processes are generally not oxygen and moisture sensitive. Secondly, 

these processes can accommodate a wide variety of important organic functional groups. 

Lastly, palladium has the ability to catalyze a number of novel organic transformations. 

In 1967, R.F. Heck reported a novel Pd(II)-mediated arylation of acyclic alkenes with 

arylmercurials under very mild reaction conditions^. Since that initial discovery, many 

researchers have extensively explored this area.4-15 The reaction basically proceeds via 

the mechanism outlined in Scheme I, which begins by a metathesis reaction between an 

Scheme I 

ArHgCl + Li^PdCl^ ArPdCl + HgClz 

H2C=CHR 

HPdCl + ArCH=CHR 

PdCl 

ArCHg—CHR 

arylmercurial and a Pd(II) salt under very mild reaction conditions (0 - 25 °C) to afford a 

reactive arylpalladium intermediate. This intermediate then adds in a syn 1,2-fashion 
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across an alkene to afford a new, a-organopalladium intermediate, followed by bond 

rotation so that a P-hydrogen is cis to the palladium. Subsequent syn elimination of 

palladium hydride affords the vinyl hydrogen substitution product 

When cyclic alkenes are employed, no bond rotation is possible after the 1,2-addition. 

Thus, there is a syn elimination of palladium hydride away fiom the initial addition site to 

afford only the allylic isomer (eq 1). While this process is very mild, there are two major 

disadvantages associated with it There is the need for a stoichiometric amount of 

expensive Pd(II) salts and toxic organomercurials. Limited success has been achieved in 

making these reactions catalytic in Pd (1 - 20 mole %). In the presence of a copper(II) 

salt, such as copper(n) chloride, the Pd(0) is oxidized to Pd(II), and the latter then re­

enters the catalytic cycle. One major drawback to this catalytic approach is having to work 

with thick slurries of copper and mercury salts. 

Two groups^^'17 independently discovered a Pd(0)-catalyzed procedure for the 

arylation of alkenes using aryl halides, and this catalytic process has circumvented the 

need for large amounts of Pd(II) salts and toxic organomercurial starting materials 

(Scheme H). The reaction proceeds by oxidative addition of an aryl iodide onto zerovalent 

palladium to afford the reactive arylpalladium species. This species then adds to the alkene 

to afford a new, unstable a-organopalladium species, followed by elimination to afford the 

expected product and hydridopalladium iodide. This unstable Pd species then reductively 

ArPdCl 
-HPdCl 

(1) 
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Scheme II 

Phi —M2L_^[phPdl] 
H2C=CH2 Pdl 

PhCHz—CH2 

KI + Pd(0) +HOAC 
KOAc 

HPdl + PhCH=CH2 
37% 

eliminates in the presence ofKOAc^*^ or EtgN^^ to afford a salt and Pd(0), which re-enters 

the catalytic cycle. Since then, many chemists have researched this catalytic process as 

applied to acyclic alkenes. There are comparatively fewer examples of cyclic alkenes 

undergoing this reaction, and these examples will now be discussed. 

In 1978 Cortese, Ziegler Jr., Hmjez, and Heck^^ reported a Pd(0)-catalyzed procedure 

for the phenylation of cyclohexene (eq 2). This group found that it was necessary to 

employ a triarylphosphine as a co-catalyst when bromobenzene was used. However, if 

iodobenzene was the phenyl source, the conditions were milder (100 ®C, 15 h), and the 

desired product was produced in a higher yield (72 %). 

Also in 1978, Tamaru, Yamada, and Yoshida^^ reported an approach to 3-aryl-

cyclohexanones (eq 3). This reaction parallels the reaction previously reported by 

PhBr + 
2 mol % (o-Tolyl)3P 

EtsN, 125 °C, 41 h 

1 mol % Pd(0Ac)2 
(2) 

56% 
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OH 
1 mol % Pd(0Ac)2 

3 mol % PhgP 

3.5 mol % Nal * 

1.2 NaHCOg 

HMPA, 9 h, 120 °C IJ 65 % 

(3) 

Heck^b where arylmercurials were employed Tamaru had also discovered that when 

acyclic allylic alcohols were employed, the regioselectivity of this process was greatly 

influenced by the choice of solvents. The role of Nal is unclear, except that the authors 

indicated that in reactions containing this salt, there was an increase in the turnover of the 

catalyst 

Arai and Daves 20 preliminarily reported in 1979 a Pd(0)-catalyzed phenylation of 3,4-

dihydro-2//-pyran (eq 4). Migration of the double bond occurred, probably due to the 

Q 1 mol % Pd(OAc)2 ph O 

™ ^ O izir Xj 
100 °C, 3 h 

63% 

high temperature employed (100 °C) in this reaction. Furthermore, only the a-phenylated 

isomer was isolated each time. Later in 1987, Andersson, Hallberg, and Daves,^! 

followed up on their earlier report with a fairly comprehensive study of this process. In 

this follow up, they found that when 3,4-dihydro-2^-pyran was arylated with 4-

iodonitrobenzene, only nitrobenzene and 4,4'-dinitrobiphenyl were formed. However, 

when the corresponding bromonitrobenzene was employed, the desired arylated product 

was isolated in a low 16 % yield, but an unspecified amount of 4-bromonitrobenzene 

remained unreacted (eq 5). Interestingly, when acyclic enol ethers were arylated, 
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NOz 
1 mol % Pd(0Ac)2 

1 mol % Pha? 

1.5 EtsN 
100 °C. 3 h 

(5) 

Br 
•  1 6 %  

there was a complex regioisomeric mixture of products. It appears that a variety of factors 

governs the regioselectivity of the arylation. 

Yamamura and co-workers^ employed a Pd(0)-catalyzed arylation procedure to 

synthesize a precursor to o-tropyliobiphenyl tetrafluoroborate, a compound useful in 

studying intramolecular charge-transfer interactions (eq 6). Although no yield was 

reported for this isomeric mixture, it was interesting to note that there was selectivity for 

the aryl iodide, and furthermore, this is the only example of an arylation of a 

cyclopolyene. 

Kikukawa and co-workers^^ reported a Pd(0)-catalyzed arylation procedure of alkenes 

using arenediazonium salts (eq 7). Although the yield for phenylcyclopentene is 

(6) 
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caLPd(dba)2 (7) 

PhN^Cl + ^ -0% ^ V_/ W 
0 .5 -1 .0  h  (10  ; 90) 

good, the reaction fast, and the conditions mild, there are several problems associated with 

this process that severely limit its use in organic synthesis. The product is a mixture of 

two isomers, with the isomerized, conjugated product present in the greatest amount. 

Kikukawa observed that diazonium salts tend to be sensitive to temperatures above 25 °C, 

and this is indicated by the formation of tarry material. When a less reactive cyclic alkene 

such as l-pyrrolidinylcyclopentene is employed, the reaction fails to proceed at 25 °C. It 

appears that the solvent, functional groups present in the arenediazonium salt, and the 

amounts of Pd catalyst ate all very critical in obtaining the desired product. Even with 

only partial formation of tarry materials, the catalyst is greatly deactivated. Finally, the 

selection of a base, NaOAc in this case, is critical or the end result is tar. 

In 1980, Kikukawa and co-workers^ reported a Pd(0)-catalyzed procedure for the 

aiylation of alkenes with arylamines and terf-butyl nitrite (eq 8). Unlike their previous 

25 °C 
70% 

PhNHg + o  1.1 tert-butyl nitrite 

HOAc, chloroacedc acid 

5 -10  mol  % Pd(dba )2 

50 °C, 0.5 h 

(95 : 5) 

8 1 %  

work discussed above, the arenediazonium salt is generated in situ from the correspond­

ing arylamine. This is an improvement over their previously reported procedure. With 

this improvement, the researchers were able to manipulate the reagents above room 
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temperature where otherwise, the arenediazonium salt would have easily decomposed. 4-

Nitroaniline can be employed in this procedure to afford 3-(4-nitrophenyl)cyclopentene in 

good yield (eq 9), while the corresponding arenediazonium salt did not react in the 

previous procedure to produce any of the desired product. The disadvantages to this 

approach could be that certain substrates may be sensitive to the acidic medium, and when 

cyclopentene and cyclohexene^ were employed, bad isomeric product mixtures were 

usually afforded. 

In 1987, Harrington and Di Fiore^^ reported a Pd(0)-catalyzed approach to 3-aryl-2,5-

dihydrothiophene-1,1-dioxides from aryl iodides and 2,5-dihydrothiophene-1,1 -dioxides 

(Scheme DI). These researchers have explored this reaction with a variety of aryl 

cat Pd(dba)2 

HOAc 

CICH2CO2H 

(9) 

67% 

Scheme HI 

Arl + 
5 mol % Pd(0Ac)2 

1.0 n-Bu4NBr 
1.25 EtsN, benzene 1.25 EtsN, benzene 

163 h. 25 °C 

52 - 70 % 
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iodides. The phase transfer conditions employed by Harrington were a modification of 

Jeffrey's conditions.^^"^^ From the results reported, the authors have observed 4-

iodonitiobenzene to be inert, and aryl iodides bearing electron-donating groups tend to 

retard the reaction rate. 

Most recentiy in 1988, Larock and Baker^O developed a general procedure for 

arylating a wide variety of cyclic alkenes (eq 10). This procedure is a modification of 

2.5 mol % Pd(0Ac)2 

Phi + 1 n-Bu4Na (10) 
%—I 1.5 KOAc, DMF \=J 

2.5 d, 25 °C 100 % 

Jeffrey's phase transfer conditions.27-29 The authors have found the base and solvent 

employed to be critical to the yield and overall rate of the reaction. The alkali metal 

acetates have proven superior as bases to all others examined. Cycloalkenes of ring size 5 

through 8 are readily accommodated. Unexpectedly, when iodobenzene and cycloheptene 

were allowed to react under these reaction conditions, only the homoallyUc isomer was 

afforded in 99 % GC yield (eq 11). Contrary to Harrington's conclusions, electron-

PU w/ \ (II) 

O  6d \=i/ 
99% 

withdrawing groups, whether in the ortho or para position, do not deactivate the arene 

toward substitution. In fact, Latock's results seem to indicate the opposite. Indeed, when 

ethyl 2-iodobenzoate and cyclopentene were allowed to react under these reaction 

conditions, the desired arylated product was produced in 0.5 day in high yield (eq 12). 
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COjEt 

(12) 

77% 

When an electron-rich aryl iodide, such as 2-iodoanisole, was allowed to react with 

cyclopentene, the reaction required heating to 80 ®C for complete conversion of the aryl 

iodide. However, in agreement with Harrington's findings, 2- and 4-iodonitrobenzene 

were found to be inert. 

Baker's subsequent investigational has revealed that aryl iodides containing a number 

of important organic functional groups could not be accommodated by his phase transfer 

procedure (also known as Procedure A: 2.5 mol % Pd(0Ac)2,1 equiv «-BU4NCI, 3 

equiv acetate base, DMF, 25 or 80 °C). Furthermore, certain cyclic alkenes have proven 

to be problematic by procedure A, because they afford isomeric product mixtures. The 

aryl iodides that could not be accommodated by procedure A are 2-iodophenol, 2-

iodobenzyl alcohol, 2-iodoaniline, 2-iodobenzaldehyde, 2-iodo-iV-acetyl-aniline, 2-iodo-

iV-tosylaniline, and 2- and 4-iodonitrobenzene. Furthermore, cyclic alkenes such as 

cycloheptene, 2,3-dihydrofuran, and 3,4-dihydro-2//-pyran produced isomeric mixtures. 

These difficulties caused Baker^l to employ an alternative procedure^^ for this same 

synthetic process (known as procedure B: 3-4 mole % Pd(0Ac)2,9 mole % PPhg, 2 

equiv. Ag2C03, and CH3CN at 80 °C). Indeed, when procedure B was employed in the 

reaction between iodobenzene and cycloheptene, only the desired allylic isomer was 

afforded in high yield (eq 13). Previously, when procedure A was employed in the 

Phi 
Procedure B 

(13) 

99% 
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reaction of iodobenzene and 2,3-dihydiofuran or 3,4-dihydro-2^-pyran, a high yield of a 

mixture of two and three isomers was afforded, respectively. When procedure B was 

employed for these same substrates, only the desired allylic isomer was produced each 

time in high yields (eqs 14 and 15). While 2- and 4-iodonitrobenzene did not react when 

Phi + 
RtocedureB gg % 

OPh. Y ] (15, 
Procedure B 

96% 

procedure A was applied, under the reaction conditions of procedure B, the desired 

product was isolated in good yield (eqs 16 and 17). 

or • o NO, 

cat Pd(0) 

Procedure B 

52% 

(16) 

cat Pd(0) 

Procedure B 

70% 

(17) 

Prashad et al.33 recently reported a convenient Pd(0)-catalyzed synthesis of 1,3-

diarylcyclopentenes, which arc intermediates to the carbon isosteres of known platelet 
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activating factor antagonists, rra«j-2,5-diaryltetrahydrofurans (a detailed discussion of 

these antagonists is found in Part Two) (eq 18). Prashad's approach was a double Heck 

2 A r I +  0  ca.Pd(0) 

1 2 
Ar = 3,4,5-trimethoxyphenyl 

arylation of cyclopentene using two different sets of reaction conditions to obtain the 

desired product. When he employed Heck's conditions,"^ a 2 :1 ratio of the desired allylic 

product (1) to the homoallylic product (2) was observed. However, when he employed 

Larock's procedure A,30 a 95 : 2.2 ratio for 1 and 2 was observed. He credits Larock's 

procedure for inhibiting the palladium hydride readdition and subsequent elimination 

which affords the homoallylic product 
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RESULTS AND DISCUSSION 

In spite of the success of Baker and Laiock's procedures A and B, there still remain a 

number of aryl iodides containing certain functional groups that are inert to these 

cycloallylation reactions. The development of an improved procedure to overcome the 

difficulties encountered in previous procedures is the objective of this section. 

Many of the aryl iodides are commercially available and were used without further 

purification. 2-Iodobenzaldehyde was prepared by oxidizing the corresponding 2-

iodobenzyl alcohol with pyridium chlorochromate (PCC) (eq 19). The aldehyde was 

ar°' ar -
100% 

used immediately as it was found to oxidize slowly upon standing. 

2-Iodo-^-acetylaniline and 2-iodo-7V-tosylaniline were obtained by quenching the 

amide anion of 2-iodoaniline with acetyl and tosyl chloride respectively (eqs 20 and 21). 

C|P'NH2 1) LDA 

2) CH3COCI 
(20) 

75 

O^NHz 1) LDA 

!L.j 2) TsCl %X^I 

51 % 

2-Iodobenzamide was prepared by treating 2-iodobenzoic acid first with thionyl 

chloride followed by aqueous ammonia (eq 22). 

(21) 
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2) NH4OH 

C0NH2 

2) NH4OH 

91 % 

(22) 

From a survey of the literature, it's obvious that the Pd(0)-catalyzed processes are 

more attractive than the Pd(II)-mediated ones employing organomercurials. Of all of the 

starting materials used in the Pd(0)-catalyzed reactions reviewed thus far, clearly the most 

attractive ones are aryl iodides. From all of the studies conducted prior to Larock and 

Baker's work,30.31 it jg clear that the reaction conditions employed are harsh, and 

frequendy the product is afforded in low yield and often contaminated with a regioisomer. 

The Larock-Baker procedures are attractive in that reaction conditions employed are very 

mild. When electron-rich aryl iodides are employed, only a slightly higher temperature is 

necessary. However, from subsequent work by Baker, it was determined that certain aryl 

iodides could not be accommodated by their method. The unreactive aryl iodides are 2-

iodobenzaldehyde, 2-iodobenzyl alcohol, 2-iodo-^-tosylaniline, 2-iodo-/^-acetylaniline, 

2-iodoaniline, 2-iodophenol, 2-iodobenzamide, 2-iodobenzoic acid, and 2- or 4-iodonitro-

benzene. A possible explanation for this phenomenon could be that some of these aryl 

iodides may form a stable organopalladium chelate with the palladium catalyst after the 

oxidative addition step (see Scheme H), thus explaining their failure to react. Baker 

claimed the presence of a hydrogen atom on a heteroatom must retard the reaction. An 

excellent example of this chelation is demonstrated with 2-iodobenzoic acid as shown 

below. As evidence to support this hypothesis, when 2-iodobenzoic acid was esterified 
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O 

O 

to the ethyl ester, thus removing the acidic hydrogen, the reaction proceeded to afford the 

desired product in good yield in only 12 hours (eq 12). 

Recently, Dr. Colleen Fried, a member of the Larock research group has observed that 

the presence of a catalytic amount ofPPhg in reactions using quaternary ammonium salts 

greatiy improves the yields in some intramolecular organopalladium cyclizations. In light 

of this success, this investigation began by exploring the scope and limitations of a new 

procedure, procedure C (procedure A plus 2.5 mole % PPh]). When 2-iodobenzaldehyde 

and cyclopentene were allowed to react using procedure A, the aryl iodide was found to be 

completely inert. When procedure C was employed, 2-iodobenzaldehyde was completely 

converted and 2-(3-cyclopentenyl)benzaldehyde was isolated in a high yield after 1 day (eq 

23)! Encouraged by these results, the remaining inert aryl iodides were also examined 

using procedure C. The results of this investigation and Baker's results are summarized in 

Table 1. From the results obtained, the following observations have been made. In the 

cases where aryl iodides bearing electron - donating groups were allowed to react with 

cyclopentene, procedure C was found to be superior to procedures A and B in that it 

reduces the reaction time and / or increases the yield of the desired 3-aiylcyclopentene. 

For example, 2-iodophenol readily reacted with cyclopentene when using procedure C to 

ProcedureC 
(23) 

87% 
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Table 1. An improved procedure C for Pd(0)-catalyzed arylation of cyclic alkenes 

Entry Aryl Iodide Cyclic Alkene Procedure^ 

: 0-' o ; 

3 C 

4 C 

A 

B 

C 

8 Cb 

9 <y 

10 CC 

11 A 

n O"' c 

14 ^ 

2 See text for details of procedures A, B, and C. 
5 Mole % of PPhg was used. 

^ 5 Mole % of PPhs and 3 equiv of EtgN were used. 
Yield was based on recovered starting material. 

® Ratio reflects allylic : homoallylic isomer as determined by 1 H NMR spectroscopy. 
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Time (d) Temp °C Product Yield (%) 

6.0 
2.0 
4.0 

4.0 

80 
80 
80 

100 
cPo 

42 

0 
66 
68 

4.5 

6.0 
7.0 

7.0 

7.0 

7.0 

80 
80 
80 
80 
80 

100 

NH2 

(fo 
6 
0 

0 
0 

52d 

31 

5.0 

5.0 

1.0 

1.0 

80 

80 

80 

80 

CHgOH 

CH20H 

0 
0 

99 

99e 

(1 : 1.8) 
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Table 1. (continued) 

Entry Aryl Iodide Cyclic Alkene Procedure^ 

15 A 

1. <3-. o ; 

18 A 

19 B 

20 C 

21 

NO 

30 
\J-' 

O 
22 
23 jT^ _ \ / B 

24 
o 

25 /=\ A 

26 O2N—^ y—I B 

27 C 

28 CO2H A 
29 /=\ B 
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Time (d) Temp °C Product Yield (%) 

7.0 

5.0 

1.0 

80 
80 
80 

CHO 0 
0 

87 

2.0 
5.0 

1.0 

1.0 

4.0 

2.0 

1.0 

4.0 

2.0 
1.0 

5.0 

3.5 

7.0 

80 
80 
80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

NHAc 

NHAc 

(1 : 1.3) 

O.N-^ I 

CO2H 

6 

0 

0 

76 

80 

0 

70 

90 

0 
52 

85 

0 
0 

14 
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Table 1. (continued) 

Entry Aryl Iodide Cyclic Alkene Procedure^ 

31 

32 

33 

CONH2 

o A 

B 

C 

34 

35 

36 

NHTs 
A 

B 

C 

37 

38 

39 

0-' 

A 

C 

40 B 

41 

f Reaction never went to completion. 

S NaOAc was used as the base. 
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Time (d) Temp °C Product Yield (%) 

3.0 

5.0 

7.0 

80 

80 

80 

CONH2 

0 

0 

4.0 

5.0 

7.0 

2.0 
4.0 

0.5 

2.0 

1.0 

80 
80 
80 

80 
80 

25 

80 

80 

NHTs 

(5.7 : 1) 

CX3 

CK3 

0 

95 

100e.g 

98 

76 
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afford the desired product in good yields (compare entries 1 - 3). When the same reaction 

was run at 100 "C with hopes of reducing the reaction time, only a. 2% improvement in 

yield was found (entry 4). Also very similar to 2-iodophenol, 2-iodoaniline proved to be 

inert when previous procedures were employed (entries 5 and 6). When the standard 

procedure C was employed, there was again no desired product (entries 7 and 8). When 

the same reaction was rerun using EtgN as the base, a dramatic improvement in the yield 

resulted (entry 9). Like the phenol, a higher reaction temperature was also employed with 

hopes of decreasing the reaction time. Unlike the results obtained from 2-iodophenol, a 

decrease in the yield of the desired product, plus the formation of unidentified side 

products were observed (entry 10). 2-Iodobenzyl alcohol was believed to be inert when 

using procedures A and B due to the formation of a stable chelate with the catalyst, thus 

hampering the formation of the desired product (entries 11 and 12). If this chelate were 

indeed involved, procedure C was successful in breaking up or preventing the formation 

of this chelate and allowed the reaction to proceed to afford the desired product in 

quantitative yield (entry 13). For reasons which are not obvious, 2-iodobenzaldehyde, 2-

iodo-iV-acetylaniline, and 2- or 4-iodonitrobenzene were completely inert when using 

procedure A (entries 15,18,22, and 25). When procedure B was employed, there was 

success only in the iodonitrobenzene examples (entries 23 and 26). For reasons which are 

not obvious, 2-iodobenzaldehyde and 2-iodo-^-acetylaniline were inert in procedure A or 

B. Yet, these same aryl iodides, again for reasons not obvious, reacted quite readily with 

cyclopentene using procedure C (entries 17 and 20). 

In spite of the successes obtained with procedure C, there remain some aryl iodides, 

such as 2-iodo-iV-tosylaniline and 2-iodobenzamide, that are inert to these and previously 

tried reaction conditions. 2-Iodo-7V-tosylaniline was an especially interesting case (entries 
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31-33), because the corresponding 2-iodo-iV-acetyIaniline reacted readily with cyclo-

pentene using procedure C (entry 20). Perhaps the acidity of the tosylaniline hydrogen 

was high enough for the formation of an anion in the presence of KOAc, therefore causing 

the nitrogen to strongly coordinate to the arylpalladium intermediate. One may also 

explain why 2-iodobenzamide was inert by using the chelate explanation. This theory is 

supported by the fact that 2-iodo-7V^dimethylbenzamide readily reacted with cyclo-

pentene^l using procedure A (eq 24). 2-Iodobenzoic acid was a unique example. 

While it proved to be inert using procedures A and B, by procedure C, it afforded a low 

yield of 3-cyclopentenyl 2-iodobenzoate. This product could be a result of a Pd(n)-
mediated oxypalladation of this carboxylic acid (Scheme IV). This reaction is well 

precedented the Larock research group. It's reasonable to argue that the ester should only 

be produced in a 2.5 % yield, but it's quite possible that the Pd(0) generated at the end of 

the cycle is somehow oxidized to Pd(II) by one of the reagents present or by air present in 

the reaction vessel. After the catalyst had been recycled a few times, it apparenfly became 

deactivated and the reaction stopped after producing the ester in 14 % yield. 

Baker^l had reported that one of the tremendous benefits of procedure B was the 

ability of this set of reaction conditions to prevent isomerization of the double bond in 

reactions employing cycloheptene and 2,3-dihydrofuran. While this is a valuable process, 

it suffers from having to use two equivalents of expensive silver salts and a large volume 

of acetonitrile. Procedure C was explored in this area to determine if it was capable of 

CONMeg 

Procedure A 

cat Pd(0) CONMea 
(24) 
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Scheme IV 

0 CO2H 

C 
KOAc 
Pd(0Ac)2 
-HOAc 

-HPdOAc 

a: COzPdOAc 1 

o 

PdOAc 

inhibiting double bond isomerization, a problem fiequently encountered with procedure A. 

Two aryl iodides were selected for this investigation. When 2-iodobenzyl alcohol and 2-

iodo-iV-acetylaniline were allowed to react with cycloheptene, an isomeric product mixture 

was isolated in high yield for each of these aryl iodides (entries 14 and 21). Previously, 

iodobenzene reacted with 2,3-dihydrofuran using procedure A to afford a mixture of two 

isomers (entry 39). When procedure B was employed, only the desired 

allylic product was produced in a quantitative yield (entry 40). Surprisingly, procedure C 

afforded only the homoallylic product (entry 41). This procedure is thus useful in 

promoting double bond isomerization in the arylation of this enol ether. 

Because of the fact that all of the reaction conditions used in the three procedures are 

mild and the products are afforded in high yield, ethyl 4-(3-cyclopentenyl)benzoate was 

prepared on a 60 mmole scale using procedure A (eq 25). There were several variations 
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used in this preparation, and the results are summarized in Table 2. Several observations 

have been made based on this series of reactions. First, an attempt was made to accelerate 

the rate of this reaction by increasing the concentration of the reagents by using only half 

of the normally required volume of DMF. However, this only serves to create an 

extremely thick mixture which could not be stirred effectively, and a significant amount of 

the bis-arylated product 5 was generated at the expense of the desired allylic product 3 

(compare entries 2 and 3). Secondly, the crude product mixture could not be distilled 

since a significant amount of the conjugated isomer 4 was formed at the expense of 3 via 

thermal isomerization (entries 1 - 3). Lastiy, if the number of equivalents of cyclopentene 

was fewer than five, a significant amount of the product 5 was also generated. Ironically, 

5 can easily be separated by distillation, but it was this very process that produced a large 

amount of 4. In entry 4, three different approaches were taken to circumvent the above 

problems. First, by using 120 mL of DMF, which is the same concentration used for the 

0.5 mmole scale reactions, the mixture was easily stiixed throughout the duration of the 

reaction. Secondly, the crude product mixture was easily purified by filtering it through a 

short column of silica gel to afford 3 in a very high yield, plus only 2 % of the conjugated 

product. Thirdly, by increasing the number of equivalents of cyclopentene to five, the 

amount of the bis-arylated product 5 was reduced to a trace. 
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E102C-
Procedurc A 

"O 
EtOzC— 0^ ^ 

E1O2C 

Table 2. Pd(0)-catalyzed preparation of ethyl 4-(3-cyclopentenyl)benzoate 

Entry n DMF (mL) Time (d) 1(%) 2(%) 3(%) 

1 1.1 60 1.0 58 10 .a 

2 2.5 60 1.0 70 10 .a 

3 2.5 120 1.0 92 8 .a 

4 5.0 120 1.0 94 2 trace 

(g 

^ The yield of this product was not determined. 
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CONCLUSION 

While procedures A and B, reported by Larock and Baker, have provided the desired 

3-arylcycloalkenes under mild reaction conditions and in high yields, the drawbacks have 

been that certain organic functional groups could not be accommodated. Procedure C, a 

simple modification of procedure A, has effectively circumvented tiiis problem, and has 

become an excellent complement to procedures A and B. Furthermore, procedure C has 

also pro-moted double bond isomerization in the reaction of iodobenzene and 2,3-

dihydrofuran to afford only the homoallylic isomer. This can serve as a selective method 

for the synthesis of this class of compounds. It was also hoped that procedure C could 

inhibit the double bond isomerization problem in the arylation of cycloheptene, but 

preliminary results were not promising. In spite of the success of procedure C, there 

remain a small number of aryl iodides containing carboxyl, iV-tosyl, and amido groups 

that remain inert regardless of the procedures employed. 

Lastiy, a 60 mmole scale preparation of ethyl 4-(3-cyclopentenyl)benzoate has been 

achieved at room temperature and in high yield. It is important to note that these reactions 

can be easily scaled up without compromising the yield of the desired product. 
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EXPERIMENTAL SECTION 

Equipment 

AU NMR spectra were recorded on a Mcolet NT-300 spectrometer (operating at 300 

MHz for hydrogen nuclei and 75 MHz for carbon nuclei). Infrared spectra were obtained 

on an IBM IR/98 FT-IR. Mass spectral data were obtrained on a Kratos high resolution 

mass spectrometer. Gas chromatographic analyses were performed by using a Varian 

3700 or a Hewlett Packard 5890 gas chromatograph equipped with a 3 % OV-101 on 

Chromasorb W packed column (Varian 3700 or HP 5890) or an HP-1 megabore column 

(HP 5890). 

Reagents 

Cyclopentene, 2-iodobenzyl alcohol, 2-iodoaniline, and triphenylphosphine were 

obtained from Aldrich. Tetra-/i-butylammonium chloride and ethyl 4-iodobenzoate were 

obtained from Lancaster Synthesis. TV^-dimethylfbrmamide (Fisher) was distilled from 

calcium hydride (CaH2) and stored over molecular sieves. 2-Iodobenzaldehyde34 was 

prepared according to a literature procedure. 2-Iodo-7V-acetylaniline and 2-iodoW-tosyl-

aniline were generously supplied by Dr. Norman Berrios-Pena and made according to a 

literature procedure's, 2-Iodobenzamide was generously supplied by Dr. L. Wayne 

Harrison.36 

The following aiylcycloalkenes were prepared from the following procedure, and the 

reaction time and temperature for the reaction are found in Table 1. In a dry 10 mL round 
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bottom flask equipped with a side arm and a stirring bar were placed Pd(0Ac)2 (0.006 g, 

2.5 mol %), PPhs (0.007 g, 2.5 mol %), TBAC (0.294 g, 1.0 mmol), KOAc (0.294 g, 

3.0 mmol), and the aryl iodide (1.0 mmol). The flask was affixed with a reflux 

condenser, septa sealed, flushed with nitrogen, and a nitrogen atmosphere was maintained 

with a bubbler. Cycloalkene (10 mmol) and DMF (2.0 mL) were injected sequentially, 

and then the reaction mixture was allowed to stir at 80 °C. After analytical gas 

chromatography or thin-layer chromatography indicated that all of the starting material had 

been consumed, the mixture was combined with ether (30 mL) and poured into a 

separatory funnel containing saturated NH4CI (50 mL). The aqueous phase was removed, 

the organic layer was dried over anhydrous MgS04, vacuum filtered through a fritted 

funnel, concentrated in vacuo, and columned to afford the desired arylcycloalkene. 

2-(3-CycIopentenyI)phenoI (entry 3) 

This compound was purified over silica gel using hexane / EtOAc (5 :1).^^ NMR 

(CDCI3) S 1.67 - 1.82 (m, 1 H, C=C-Œ2-CHH), 2.37 - 2.59 (m, 3 H, C=C-CH2-

CHH), 4.05 - 4.11 (m, 1 H, Ar-CH-C=C), 5.59 (s, IH, OH), 5.86 (ddd, 1 H, / = 7.5 

Hz, y = 1.8 Hz, y = 1.8 Hz, CH=CH), 6.04 (dd, 1 H, / = 7.5 Hz, J = 2.4 Hz, CH=CH), 

6.77 - 6.87 (m, 2 H, aromatic Hs), 7.07 (d, 1 H, / = 7.2 Hz, aromatic H), 7.08 (d, 1 H, 

J = 7.2 Hz, aromatic H); 13c NMR (CDCI3) 6 31.59, 32.61, 46.50, 96.50, 115.78, 

120.45, 127.34 (2 peaks), 133.29, 133.82, 153.94; IR(neat) 3441, 3055, 2941, 2849, 

1604,1501,1497, 1269, 1221, 1175, 1094,1043,752, 737 cm-1; HRMS: calcd for 

C11H12O m/z 160.08882, found m/z 160,08880. 
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2-(3-CycIopentenyI)aniline (entry 9) 

This compound was purified over silica gel using hexane / EtOAc (4:1). NMR 

(CDCI3) Ô 1.73 - 1.82 (m, 1 H, Qffl), 2.32 - 2.52 (m, 3 H, C=C-CH2-CHH), 3.72 (s, 

2 H, NH2), 3.86 - 3.92 (m, 1 H, Ar-CH-C=C), 5.83 (ddd, 1 H, / = 5.7 Hz, 7 = 2.1 Hz, 

y = 2.1 Hz, CH=CH), 5.99 (dd, 1 H, 7 = 5.7 Hz, / = 2.4 Hz, CH=CH), 6.67 (dd, 1 H, 

J = 6.6 Hz, J = 6.6 Hz, aromatic H), 6.71 (dd, 1 H, / = 7.5 Hz, J = 7.5 Hz, aromatic H), 

7.02 (d, 1 H, / = 7.5 Hz, aromatic H), 7.02 (d, 1 H, J = 7.5 Hz, aromatic H); 13c NMR 

(CDCI3) 5 30.43, 31.60, 32.50, 47.04, 115.89, 118.55, 126.99, 127.76, 132.55, 

133.22, 144.13; IR (neat) 3462, 3377, 3053, 2934, 2851,1620, 1582, 1495, 1456, 

1288,1254,750,733, 646 cm-1; HRMS: calcd for C11H13N m/z 159.10480, found m/z 

159.10443. 

2-(3-CycIopentenyl)benzyl alcohol (entry 13) 

This compound was purified over silica gel by using hexane / EtOAc (4:1), ^H NMR 

(CDCI3) 5 2.35 - 2.50 (m, 4 H, C=C-Œ2-CH2), 2.85 (s, 1 H, OH), 4.10 - 4.15 (m, 1 

H, Ar-CH-C=C), 4.65 (dd, 2 H, 7 = 8.1 Hz, 7 = 4.2 Hz, Ar-CH2), 5.69 - 5.72 (m, 1 H, 

CH=CH), 5.94 (dd, 1 H, 7 = 5.4 Hz, 7 = 2.1 Hz, CH=ai), 7.11 - 7.21 (m, 3 H, 

aromatic Hs), 7.29 (d, 1 H, 7 = 7.5 Hz, aromatic H); I3c NMR (CDCI3) ô 32.32, 

33.31, 46.25, 62.73, 125.89, 126.65, 127.87, 128.15, 131.92, 133.77, 137.54, 

144.33; IR(neat) 3331, 3057, 3028, 2937, 1437, 1452, 1040, 1011, 910, 754, 733 

cm-1; HRMS: calcd for C12H14O m/z 174.10445, found m/z 174.10447. 
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2-(3-CycIopentenyI)benzaldehyde (entry 17) 

This compound was purified over silica gel using hexane / EtOAc (7.5 :1). NMR 

(CDCI3) 8 1.60 - 1.72 (m, 2 H, CH2), 2.43 - 2.62 (m, 2 H, C=C-Œ2), 4.80 - 4.87 (m, 

1 H, Ar-CH-C=C), 5.71 - 5.76 (m, 1 H, CH=CH), 5.99 - 6.03 (m, 1 H, CH=CH). 7.35 

(dd, 2 H, / = 7.5 Hz, J = 7.5 Hz, aromatic H), 7.51 (ddd, 1 H, 7 = 7.5 Hz, J = 7.5 Hz, J 

= 1.2 Hz, aromatic H), 7.82 (d, 1 H, / = 7.5 Hz, aromatic H), 10.38 (s, 1 H, CHO); 

13c NMR (CDCI3) 5 32.34, 33.93, 45.96, 126.31, 127.68, 128.54, 131.42, 132.93, 

133.29, 133.94, 148.76, 192.34; IR(neat) 3057, 2937, 2851, 1693, 1599, 1572, 1450, 

1209,1186,1015,758,733,656 cm'l; HRMS: calcd for C12H12O m/z 172.08886, 

found m/z 172.08882. 

2-(3-CycIopentenyl)-iV-acetylaniline (entry 20). 

This compound was purified over silica gel using hexane / EtOAc (4:1). ^H NMR 

(CDCI3) Ô 2.00 (s, 3 H, COŒ3), 2.26 - 2.42 (m, 4 H, C=C-CH2-CH2), 3.87 - 3.98 

(m, 1 H, Ar-CH-C=C), 5.67 - 5.69 (m, 1 H, CH=CH), 5.91 - 5.93 (m, 1 H, CH=CH), 

6.97 - 7.09 (m, 3 H, aromatic Hs), 7.56 (d, 1 H, / = 8.1 Hz, aromatic H), 7.72 (br s, 1 

H, NH); 13c NMR (CDCI3) 6 23.89, 31.49, 32.46, 47.36, 124.62, 125.44, 126.59, 

127.99, 132.74, 133.32, 135.02, 137.22, 168.64; IR (KBr) 3268, 3189, 3132, 2963, 

1651,1532,1478,1371,1013,748,712 cm'l; HRMS: calcd for C13H15NO m/z 

201.11537, found m/z 201.11554. 

2-(3-CyclopentenyI)-l-nitrobenzene (entry 24) 

This compound was purified over silica gel by using hexane / EtOAc (4:1). The 

spectroscopic data were identical to those reported by Baker.3l 
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4-(3-CycIopentenyl)-l-nitrobenzene (entry 27) 

This compound was purified over silica gel by using hexane / EtOAc (4:1). The 

spectroscopic data were identical to those reported by Baker.^l 

2-(3-Cyclopentenyl)biphenyI (entry 37) 

This compound was purified over silica gel using hexane. NMR (CDCI3) 8 1.68 -

1.76 (m, 1 H, Ar-CH-CEH), 2.19 - 2.35 (m, 2 H, CH2), 2.43 - 2.53 (m, 1 H, Ar-CH-

CHH), 3.92 - 3.98 (m, 1 H, Ar-CH-C=C), 5.64 - 5.67 (m, 1 H, CH=CH), 5.88 (dt, 1 

H, / = 5.7 Hz, / = 2.1 Hz, CH=CH), 7.21 - 7.42 (m, 9 H, aromatic Hs); 13c NMR 

(CDCI3) 5 32.47, 34.54, 47.39, 125.54, 126.67, 127.10, 127.67, 127.89, 129.41, 

129.64, 131.46, 134.67, 141.32, 141.86, 144.07; IR(neat) 3057, 3022, 2930, 1597, 

1477,1460,1072,1016,1009,748,702,617 cm-l; HRMS: calcd for C17H16 m/z 

220.12520, found m/z 220.12526. 

2-Phenyl-2,3-dihydrofuran (entry 41) 

This compound was purified over silica gel using hexane / EtOAc (10:1).38 iH 

NMR (CDCI3) 5 2.58 (dddd, 1 H, / = 12.9 Hz, / = 8.4 Hz, / = 2.4 Hz, 7 = 2.4 Hz, Ph-

CH-CHH-C=C), 3.38 (dddd, 1 H, / = 12.9 Hz, / = 10.2 Hz, / = 2.4 Hz, / = 2.4 Hz, 

Ph-CH-CI5i-C=C), 4.92 (ddd, 1 H, / = 2.7 Hz, / = 2.7 Hz, / = 2.7 Hz, Ph-Œ-CH:), 

5.49 (dd, 1 H, y = 10.8 Hz, 7 = 8.4 Hz, Qi=CH-0), 6.43 (dd, 1 H, / = 5.0 Hz, J = 2.6 

Hz, CH=CH-0), 7.23 - 7.34 (m, 5 H, aromatic Hs); 13c NMR (CDCI3) 6 37.79, 

62.24, 98.91, 125.48, 127.50, 128.40, 142.94, 145.21; IR(neat) 3087, 3062, 3031, 

2932,1728,1620,1495, 1450, 1136,1051, 1001,941,758, 698 cm-1; HRMS: calcd 

for CioHioO m/z 146.07317, found m/z 146.07317. 
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Ethyl 4-(3-cyclopentenyI)benzoate (see Table 2) 

This compound was purified over silica gel by using hexane / EtOAc (8:1). The 

spectroscopic data were identical to those reported by Baker.^l 
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PART n. PALLADIUM-CATALYZED SYNTHESIS OF TRANS-2,5-DLN.RYL-

TETRAHYDROFURANS, POTENT INHIBITORS OF PLATELET ACTIVATING 

FACTOR 
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BsrmoDUcnoN 

Platelet activating factor (PAF) is a fundamental mediator of mammalian cell 

functions. 1 PAF has been identified as an acetyl glycero ether phosphorylcholine, 1-0-

hexadecyl / octadecyl-2-acetyl-5n-glycero-3-phosphorylcholine (1).^"^ PAF is 

ÇH2OC16H33 or C18H37 
CH3CO2—C—H 

CH20PÔ20CH2CH2N(CH3)3 

1 

synthesized and secreted by a variety of cells involved in inflammatory responses, 

including basophils, neutrophils, platelets, macrophages, endothelial cells, and IgE-

sensitized bone marrow mast cells.^ PAF has been implicated as an important mediator of 

pathophysiological reactions in animal and human diseases.^ PAF initiates its actions first 

by binding to its receptor sitesJ"^ Recq)tor sites in rabbit plasma membrane, guinea pig 

smooth muscle membranes,^ human platelets,*,^ and human lung tissues^! have already 

been identified using pH] PAF. Furthermore, the nature of PAF binding sites and the 

supposed conformation of PAF have already been discussed.!^ The wide variety of 

biological actions PAF exerts includes inter alia smooth muscle contraction, neutrophil 

degranulation, gastro-intestinal dysfunction,̂ 3-15 acute allergy, inflammation, and toxic 

shock. ̂ 6,17 Researchers have recentiy learned that PAF may play a major role in 

asthma,and possibly late asthmatic responses.20.21 in animal model studies, PAF 

induces bronchoconstriction,^ neutropenia, 22 systematic hypotension, 23 increased 

vascular permeability,2^ and elevated plasma lysosomal hydrolase levels.25 Most 

recentiy, Etienne and co-workers26 have uncovered evidence suggesting the possible 
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involvement of PAF in endotoxin-induced abortion in mice. Indeed, endotoxemia induces 

a massive release of PAF during endotoxic shock, which induces a high level of 

miscarriages in women and in animal models.27 It is believed that PAF is the mediator 

involved in the increase in permeability at the site of ovoimplantation. Besides PAF's 

primary role in the inflammatory process, this phospholipid has also been reported to be a 

chemotactic^S as well as a tumor-cytotoxic agent ̂ 0 

The synthesis of therapeutically effective antagonists to the binding of PAF to its 

receptor sites remains a challenge for synthetic organic chemists. ̂ 2 in Table 1, a summary 

of synthetic compounds known to inhibit the binding of PAF to its receptor sites is 

presented.29-35 Table 2 is a summary of natural products known to have some anti-PAF 

activities.36-45 

Synthetic analogues of a series of neolignans known as diaryltetrahydrofiirans (2) 

have received much attention within the last six years as PAF antagonists. Biftu and 

co-workers 46.47 reported a multi-step synthetic process to afford a number of these 

compounds, and their approach is represented by the synthesis of two of the more potent 

PAF antagonists 3 and 4 (Scheme I). The multi-step synthesis of these compounds 

begins with an oxidative coupling reaction of 5 or 6 mediated by copper(n) to afford the 

desired diketones 7 and 8 in modest yields. The ketones, 7 and 8, are then reduced in 

excellent yields to the corresponding diols, 9 and 10, respectively. Treatment of the diol 

9 with mesyl chloride and triethylamine produces 3 as a mixture of cis and trans isomers. 

Treatment of diol 10 with trifluoroacetic acid in chloroform affords 4 also as a cis / trans 

2 
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Table 1. Known synthetic PAF antagonists 

Entry Compound^ Reference 

1 CV 3988 29 

2 CV 6209 30 

3 Ono 6240 31,32 

4 SRI 63-119 31,32 

5 SRI 63-072 33 

6 SRI 63-073 34 - 36 

7 48740RP 34 - 36 

8 52629RP 37 

9 52770RP 37 

10 ~ WEB 2086 32 

11 Kadsurenone - Ginkgolide hybrid 38 

12 2,5-diarylcyclopentanol 39 

^ Compound number or name is given. 
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Table 2. Natural products with PAF antagonists activities 

Entry Compound^ Source Reference 

1 BN 52020 Ginkgo biloba 40 

2 BN 52021 Ginkgo biloba 40 

3 BN 52022 Ginkgo biloba 40 

4 BN 52023 Ginkgo biloba 40 

5 BN 52024 Ginkgo biloba 40 

6 Kadsurenone Piper futokadsurae 41 

7 Presteganes A Steganotaenia aralacea 42 

8 Presteganes B Steganotaenia aralacea 42 

9 FR-900452 S. Phacofaciens 43-45 

10 FR-49175 P. tertikowskii 43-45 

2 Compound number or name is given. 
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Scheme I 

CH3O 

CH, 

OCH, 

5 R = H 

6 R = OCH3 

LAH 

THF 

1) LDA 

2) CuCl2 

3) HCl 

CH3O 

CH3O 

CH2 2 

OCH3 

7 R = H, 25% 

8 R = OCH3, 49 % 

OH 

OCH3 9 R = H, 92% 

10 R = OCH3, 83 % 

TFA MsQ 
9 

Et,N OCH 

OCH3 

3 R = H, 64 % (22% cis) 

4 R = OCH3, 52 % (22 % cis) 



www.manaraa.com

46 

mixture. Analysis of 3 and 4 has indicated that the trans isomer is the only isomer that 

exhibited any anti-PAF activityFurthermore, by decreasing the number of 

methoxy groups ftom 6 (4) to 4 (3), the anti-PAF activity also correspondingly 

decreased.^'' Biftu and co-workers ^^'47 also synthesized a number of analogues of 3 

and 4 and their anti-PAF activities has been evaluated by a number of researchers (Table 

3) 48-57 Unfortunately, Biftu's approach suffers firom a lengthy synthesis and low overall 

yields of these important compounds. Moreover, the desired trans isomer is not the 

exclusive isomer produced and it is not easily separated from the cis isomer. 

Corey and co-workers^^ recently communicated an enantioselective synthesis of 3 and 

/ranj-2-(2-naphthyl)-5-(3,4-dimethoxyphenyl)tetrahydrofuran (11) using his "CBS" 

catalyst 12 (Scheme II). Corey's multi-step approach begins with an enantioselective 

OCH 

CHg 

12 

reduction of the ketoester 13 to afford the corresponding alcohol 14 in a quantitative 

yield. Treatment of the chiral alcohol 14 with sodium hydride then provides the chiral 

l a c t o n e  1 5 .  T h e  l a c t o n e  i s  r e d u c e d  w i t h  D I B A L  t o  a f f o r d  t h e  d e s i r e d  l a c t o l  a s  a  1 : 1  

mixture. Treatment of the lactol with trimethylsilyl bromide generates the unstable 

bromide, which when coupled with the appropriate arylmagnesium bromide provides a 
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Table 3. frQw^-2,5-Diaryltetrahydrofurans as PAF antagonists 

Entry Ri ^ R^ R4 Rg R6 References 

1 Œ3O Œ3O CH3O CH3O CH3O CH3O 49-56 

2 CH3O CH3 Œ3O CH3O HO CH3O 46,48 

3 Œ3O EtO CH3O CH3O EtO CH3O 48 

4 CH3O z-PrO CH3O CH3O EtO CH3O 48 

5 CH3O i-PrO CH3O CH3O i-PrO CH3O 48 

6 CH3O CH3O Œ3O CH3O H Œ3O 48 

H CH3O CH3O CH3O CH3O H 59 
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Scheme n 

CH .Çr 

OH 

OCH3 

13 

(CH,)^0^ Bjifi 

CH3o\̂  
OCH3 

14 

98 % (95 % ee) 

NaH DIBAL 

OŒ3 

15 

90% 

OCH, 
16 

8 8  %  ( 1 : 1 )  

TMSBr 
-78 T 

-100 °C MgBr 

3 

70 % (10: 1) 

11 

86 % (18 : 1) 
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mixture of cis and trans isomers of antagonists 3 and 11, respectively, in good overall 

yields. By using the other enantiomer of catalyst 12, the enantiomers of 3 and 11 were 

also obtained in parallel syntheses. In a later communcation, Corey et al.59 reported the 

biological activities of both R and S enantiomers of 3 and 11. Surprisingly, there was 

almost no difference in their anti-PAF activities, and Corey also echoed what Biftu'*^''*^ 

had reported earlier about the relative inactivities of the cis isomers toward inhibiting the 

binding of PAF to its receptor sites. While Corey's approach is more versatile in that 

enantiomers are produced in high yields, like Biftu's approach, the trans isomer is not the 

exclusive isomer produced. 

Most recentiy, Pompipom et al.^ reported the synthesis of /rûWj-2-(3-methoxy-5-

methylsulfonyl-4-propoxyphenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (18), 

another /rûrt5-2,5-diaiyltetrahydrofuran effective as a PAF antagonist (Scheme IE). Their 

synthesis begins with an alkylation of 5-iodovanillin (19) and ketone 21 to afford 

the propylvanillin 20 and ketone 22, respectively. Vanillin (20) and ketone 22 are then 

coupled using sodium cyanide in DMF to afford the diketone 23. Treatment of diketone 

23 with copper, dimethyldisulfide, and 2,4-lutidine produces the corresponding methyl 

sulfide, which in the presence of MCPBA provides the diketone sulfone 24. This 

diketone is then reduced to the corresponding diol with sodium borohydride in ethanol, 

followed by treatment with trifluoroacetic acid to afford the desired antagonist 18 in 50 % 
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Scheme m 

OHC 

Xrl 
0CH3 
19 

n-PrBr 

K2CO3 

DMF 

1) (CHshNH. 
CH3 (CH20)x. HCl 

2) Na0H,H20 

21 

20 + 22 
NaCN 

DMF 

CH3O, 

CH3O 

OCH3 

N(CH3)2 

OCH3 22 
65% 

CH3O 

CH3O 

OPr 

OCH, 

23 
OCH3 61 % 

1) Cu, (CH3)2S2, 
2,4-lutidine 

2) MCPBA 

18 
1) NaBH4 

CH3O, 

2) TFA 

50% (23%cis) 
CH3O 

SO2CH3 
OPr 

OCH, 

24 
OCH3 45 % 
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yield, plus 23 % of the inactive cis isomer. 

Recently, Prashad et al.^^ reported a palladium(0)-catalyzed synthesis of 1,3-diaryl-

cyclopentenes which are intermediates to 1,3-diarylcyclopentane and are carbon isosteres 

of 2,5-diaryltetrahydrofurans. Prashad's synthetic approach was a double Heck arylation 

of cyclopentene using either Heck's^^ reaction conditions or Larock and Baker's^^ 

procedure A (eq 1). When he employed the former procedure, a 2: 1 ratio of the desired 

allylic product ( 1,3-diaiyl-1 -cyclopentene) to homoallylic product (1,4-diaryl-l-

cyclopentene) was observed. However, when he employed Larock's procedure A, a 

95 : 2.2 ratio of the same products was observed. He credits Larock's procedure for 

inhibiting the palladium hydride readdition and subsequent elimination to the alkene which 

provides the undesired homoallylic product. In this same publication, Prashad did not 

report hydrogenating these intermediates in order to obtain 1,3-diarylcyclopentanes in spite 

of the fact that he indicated that these alkenes are the necessary intermediates to 1,3-

diarylcyclopentanes. 

It was only in a later publication that Prashad et al.^^^ reported using these 1,3-diaryl-

1-cyclopentenes in a Lewis acid catalyzed ene reaction with paraformaldehyde to afford a 

variety of fraMj-2,5-diaryl-2-cyclopentene-1 -methanols (eq 2). The latter compounds are 

2 Arl 

AT = 3,4,5-trimethoxyphenyl 

(1) 
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.OH 

parafonnaldehyde f 
\ / • A^At (2) 
\—i diethylaluminum chloride \ tT 

CH2Cl2.25''C \—" 

AT = 3,4^-lrimethoxyphenyl 61 % 

to 2,5-diaryl-2-cycIopentane-l-methanol, which are potential PAF inhibitors. 
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RESULTS AND DISCUSSION 

In this section, the development of a convient procedure for the synthesis of a variety 

of 2-aryl-2,3-dihydrofurans, and the use of this procedure in an efficient three-step, 

stereoselective synthesis of a variety of fra/zf-2,5-diaryltetrahydrofurans are described. 

Most of the aryl iodides used were commercially available and used without further 

purification. 2-Iodobenzaldehyde was obtained from the corresponding benzyl alcohol (eq 

3). 2-Iodonaphthalene was obtained from iodination of 2-naphthylmercuric chloride (eq 

4). 4-Iodo-1,2-dimethoxybenzene was obtained from iodination of 1,2-dimethoxy-

(3) 

CHO 
PCC 

CH2CI2 
25 

100% 

r J —^—- [ J (4) 
HgCl CHaOH-Pyr 

26 
91 % 

benzene (eq 5). l-Iodo-3,4,5-trimethoxybenzene was obtained in a low yield from 3,4,5-

OCH3 
CHgO^ 

(5) 
CH2CI2 

CH3O 
AgTFA 

trimethoxybenzoyl chloride as a variety of other products were also present (eq 6). 
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OCHg OCH 
C H s O ^ J .  AIBN CHgO 

JT ^ + ^N^SNa Wz L it 
CHgO -̂̂ ^COa I CH3O 

As discussed in part I of this dissertation, three different palladium procedures 

(procedure A: 2.5 mole % Pd(0Ac)2,1 equiv «-BU4NCI, 3 equiv KOAc, DMF at 25 "C 

or 80 °C; procedure B: 3-4 mole % Pd(0Ac)2,9 mole % PPhg, 2 equiv Ag2C03, 

CH3CN at 80 °C; procedure C: procedure A plus 2.5 mole % PPhg) have been used for 

the arylation of cyclic alkenes (eq 7). Larock and Baker's procedure A63 is a 

Phi + catPdW ^ (7) 

procedure A 

general procedure for the arylation of cyclic alkenes, but certain aryl iodides containing 

important organic functional groups were found to be inert when using this procedure. 

Furthermore, certain cyclic alkenes such as cycloheptene, 2,3-dihydrofuran, and 3,4-

dihydro-2f/-pyran produced mixtures of allylic and homoallylic isomers. For example, 

when iodobenzene was allowed to react with 2,3-dihydrofuran using procedure A, a 

mixture of the allylic and homoallylic isomers was generated in a 5.7 to 1 ratio (eq 8). 

.0. Ph^O, 
PM + Çy -«-MO) • (8) 

100% 
(5.7 ; 1) 

This has caused Larock and Baker^^ to use procedure B,64,65 which circumvents some of 

the functional group and isomerization difficulties (eq 9). In spite of the 
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Phi + —Steffi—-

p.»ed»=B 

improvements procedure B offered, there are still a number of aryl iodides that remain 

inert under those conditions. As a result, Larock and Gong^ have developed procedure C 

that effectively eliminated die functional group difficulties. It was also important to deter­

mine if procedure C would also eliminate the double bond isomerization problem seen in 

eq 8 when procedure A was employed, since this would offer a less expensive alternative 

to procedure B. Unexpectedly, procedure C afforded only the homoallylic isomer (eq 10). 

PM + StMÏÏ CO) 

Encouraged that procedure C might provide a general route to 2-aryl-2,3-dihydrofurans, a 

number of aryl iodides were used to determine the scope and limitations of this synthetic 

process, and the results are summarized in Table 4. From the results obtained, the 

following conclusions can be made. All of the reactions, except the one reported in entry 

5, were complete in 24 hours. In all cases, except entry 1, the aryl iodides afforded only a 

trace of the allylic isomer. Fortunately, both isomers were easily separated using flash 

column chromatography. 

Motivated by the success obtained in this study, the application of this chemistry in the 

synthesis of trans -2,5-diaryltetrahydrofurans is envisioned in Scheme IV. Three PAF-

antagonists (3,4, and 11) were selected as synthetic targets. The first step employed 

procedure C to generate the necessary 2-aryl-2,3-dihydrofuran (Table 5). In all three 

cases, only a trace of the allylic isomer was produced. Without exception, all three 



www.manaraa.com

56 

Arl + 0 procedure C ^ 

Table 4. Arylation of 2,3-dihydrofuran 

Entry Aryl iodide Product Yield (%) 

1 a- (y<3 76 

2 EtOzC-^^^—I e.O,C-Q-̂  70 

3 

CHO 

- d-
CHO 

61 

4 
.NO2 

0-
^N02 

53 

5 

0CH3 

0-
0CH3 

53» 

® This reaction required 3 days to complete. 
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^ proche 

Table 5. Synthesis of 2-aryl-2,3-dihydrofurans using procedure C -

Entry Aryl iodide Product Yield (%) 

CH3O Œ3O 31 

63 
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reactions were easily completed in a period of 24 hours. The second step of this approach 

must fulfîll two criteria. First, the palladium procedure employed must afford only the 

allylic isomer. If not, the hydrogénation step of this sequence would produce the inactive 

cis -isomer^ (eq 11). Secondly, this second arylation step must employ as few 

Scheme IV 

- - Ar^ ,0, 
Arl + O X) 

Pd(0) 
Ar'I 

c\ — r\ 
-Ar'"^O^Ar' Ar'"^O^Ar' 

equivalents of the valuable 2-aryl-2,3-dihydrofuran as possible. The coupling of 1-iodo-

3,4-dimethoxybenzene and 2-(2-naphthyl)-2,3-dihydrofuran was employed in this 

investigation to determine the optimal palladium procedure (eqs 12 -14). Procedure B 
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procedure A complex mixture of 
products 

(12) 
29 

"a, -
\ 

0CH3 
CH30. 

1.1 procedure C complex mixture of 
products . 

(13) 
29 

Œ3O 
procedure B 

29 CH3O 

(14) 

32 

easily fulfilled both criteria by affording only the allylic isomer. Furthermore, this step 

required only a 10 % excess of the aryl iodide. Having established the optimal conditions 

from this study, the other substrates were then coupled under these same reaction 

conditions, and the results are summarized in Table 6. In all cases, the reactions were 

completed in only 24 hours. In entry 2, by reversing the order in which the dihydrofuran 

was arylated, a higher yield of 32 was obtained, and this reaction was also found to 

contain fewer side products than entry 1. It's important to note that these diaryldihydro-

fiirans will aromatize to the corresponding furans if the reactions are allowed to run 

beyond 24 hours. 

Although the final step of this synthesis may appear to be trivial, the actual chemistry 

was not. Compound 32 was used in this hydrogénation procedure employing palladium 

on charcoal (eq 15). Unfortunately, no desired product was recovered. What in fact 

occurred was that 11 was initially generated, but under the reaction conditions, the benzyl 

ether linkages were also reduced. With this complication in mind, an alternative such as 

32 
Pd/C 

many products (15) 
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Table 6. Arylation of 2-aryl-2,3-dihydrofuran using procedure B 

Entry Aryl Iodide 

Œ3O 

Alkene Product 

1 CH3O -b" 
CH30 

CH30 

CH30^^^ 33 

Yield (%) 

59 

OCH, 93 

OCH3 

82 

CH3O 

I CH3O CH3O 

CH3O 

CH3O 

CH3O 
OCH, OCH, 
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diimide was considered (eq 16). Once again, 32 was not fully converted, and 

32 4K02CN=NC02K , 33 + ^ (16) 

• 2) 
CH3OH 
24h 

the inseparable mixture was again hydrogenated using 10 equivalents of dipotassium 

diazodicarboxylate (eq 17). Once again, incomplete hydrogénation was observed. 

32 + II 10 K02CN=NC02K 32 + 11 (17) 

HOAc (1 : 1) 

A survey of the literature revealed that platinum(IV) oxide is a milder and more 

selective catalyst than palladium on charcoal. Moreover, the survey also revealed that 

platinum oxide tends not to isomerize the double bonds of alkenes, and the activity of the 

catalyst is highly dependent on the polarity of the solvent Thus, by increasing the polarity 

of the solvent, the activity of the catalyst also increases. Since greater selectivity was 

desired in this hydrogénation step, a less polar solvent, EtOAc, was employed. When this 

hydrogénation system was employed on 32, the desired PAF - antagonist was finally 

obtained in 93 % yield (eq 18). The remaining trans -2,5-diaryl-2,5-dihydro-

32 23%PtO?..H2 . 11 (18) 

EtOAc 
100 min 93 % 

furans were then hydrogenated using these hydrogénation conditions (eqs 19 and 20) 

33 
23 % PtOz, H2 ^ 3 

EtOAc 
60 min 69 % 

34 
23 % Pt02. Hz 

EtOAc 
20 min 

4 

7 8 %  

(20) 
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CONCLUSION 

Procedure C is a valuable synthetic tool in the arylation of cyclic alkenes. When the 

alkene is 2,3-dihydrofuran, isomerization of the double bond of the product is promoted 

by this catalyst system, and the predominate isomer is the homoallylic isomer. The scope 

and limitations of this procedure for the arylation of this enol ether are discussed. 

Application of this useful procedure in a three-step synthesis of a number of trans -2,5-

diaryltetrahydrofurans, which are potent PAF antagonists, has been successful. This 

synthetic process is far superior to literature procedures at the present time in that the 

reactions are simple, high yielding, and limited only by the availability of the aryl iodides. 

Furthermore, only the biologically active trans isomer is afforded each time. 
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EXPERIMENTAL SECTION 

Equipment 

All NMR spectra were recorded on a Mcolet NT-300 spectrometer (operating at 300 

MHz for hydrogen nuclei and 75 MHz for carbon nuclei). Infrared spectra were obtained 

on an IBM IR/98 FT-IR. Mass spectral data were obtained on a Kratos high resolution 

mass spectrometer. Gas chromatographic analyses were performed by using a Varian 

3700 or a Hewlett Packard 5890 gas chromatograph equipped with a 3 % OV-101 on 

Chromasorb W packed column (Varian 3700 or HP 5890) or an HP-1 megabore column 

(HP 5890). 

Reagents 

1,2-Dimethoxy benzene, 3,4,5-trimethoxybenzoyl chloride, iodobenzene, 2-iodonitro-

benzene, 2-iodoanisole, 2,3-dihydrofuran, potassium acetate, silver carbonate, silver 

trifluoroacetate, platinum(V) oxide, and PPhg were all obtained from Aldrich. Tetra-n-

butylammonium chloride was purchased from Lancaster synthesis. - Dimethyl-

formamide, methylene chloride, and acetonitrile (Fisher) were all distilled from calcium 

hydride and stored over anhydrous molecular sieves. Toluene (Fisher) was distilled from 

sodium metal and stored over anhydrous molecular sieves. 2-Iodobenzaldehyde was 

prepared according to a literature procedure.^^ 
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2-Iodonaphthalene (26)68 

In a 250 mL round bottom flask containing a stirring bar were added methanol (194 

mL), p-naphthylmercuric chloride (3.63 g, 10.0 mmol), and pyridine (4.9 mL). Once the 

stirring began, 1% (2.79 g, 11.0 mmol) was added in small portions. The solution was 

allowed to stir for 5 hours before it was poured into a separatory funnel containing 

saturated sodium chloride (100 mL) and hexane (100 mL). The aqueous layer was 

removed, and freshly prepared saturated aqueous Na2S203 (1(X) mL) was added. The 

aqueous layer was removed and the hexane layer was washed with saturated sodium 

chloride, dried over anhydrous MgS04, filtered through a fritted funnel, concentrated in 

vacuo, and purified over silica gel using hexane to afford 2-iodonaphthalene in a 91 % 

yield (mp 55 - 56 "C, Ht mp69 53 - 54 °C). iH NMR (CDCI3) 6 7.46 - 7.51 (m, 2 H, 

aromatic Hs), 7.57 (d, 1 H, / = 8.1 Hz, aromatic H), 7.70 - 7.72 (m, 1 H, aromatic H), 

7.79 (dd, 2 H, y = 6.0 Hz, J = 3.3 Hz, aromatic Hs), 8.23 (s, 1 H, aromatic H). 

l,2-Diinethoxy-4-iodobenzene (27)70 

In a flame-dried 3-necked round bottom flask under a nitrogen atmosphere equipped 

with a stirring bar, a reflux condenser, and an addition funnel were placed silver 

trifluoroacetate (4.00 g, 18.2 mmol) and 1,2-dimethoxybenzene (2.51 g, 18.2 mmol). 

The suspension was stirred for one minute before I2 (4.62 g, 19.2 mmol) dissolved in 

methylene chloride (100 mL) was added over a period of two hours. After the addition 

was completed, the mixture was stirred for two additional hours before the mixture was 

filtered through a plug of Celite, and the solids were washed with methylene chloride (3 x 

20 mL). The organic layer was extracted once with water, saturated Na2C03, and freshly 

prepared 10 % Na2S203. The organic layer was dried over anhydrous MgS04, 
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concentrated in vacuo, filtered through a fiitted funnel, and columned over silica gel using 

3 :1 hexane /EtOAc to afford the desired aryl iodide in 99 % yield. NMR (CDCI3) 5 

3.82 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 6.59 (d, IH, J = 8.4 Hz, aromatic H), 7.09 

(d, IH, J = 1.8 Hz, aromatic H), 7.21 (dd, IH, J = 8.4 Hz, J - 1.8 Hz, aromatic H). 

l-Iodo-3,4,5-triinethoxybenzene (28)71 

In a flame-dried 3-necked round bottom flask equipped with a stirring bar, addition 

funnel, and a reflux condenser was placed anhydrous 2-mercaptopyridine N-oxide sodium 

salt (3.29 g, 22 mmol). After the flask had been flushed with dry nitrogen, an atmosphere 

of nitrogen was maintained. Toluene (60 mL) was introduced via the addition funnel and 

methylene iodide (5.90 g, 22 mmol) was then injected. In a separate flask were placed 

AIBN (0.5 g), 3,4,5-trimethoxybenzoyl chloride (4.61 g, 20 mmol) and toluene (100 

mL). This mixture was swirled until the solids were all dissolved and then transferred to 

the addition"funnel. The toluene solution in the flask was heated to reflux before the 

AIBN and the acid chloride dissolved in toluene were added dropwise over a 30 minute 

period. After the addition, the solution was heated for 15 more minutes. The toluene was 

removed in vacuo, and the residue was columned over silica gel using 3 : 1 hexane / 

EtOAc to afford the desired aryl iodide in 14 % yield. ^H NMR (CDCI3) 6 3.82 (s, 3H, 

OCH3), 3.84 (s, 6H, 0CH3'S), 6.89 (s, 2H, aromatic Hs). 

General procedure for the arylation of 2,3-dihydrofuran 

In a 10 mL round bottom flask equipped with a side arm were placed palladium acetate 

(0.006 g, 2.5 mol %), PPhg (0.007 g, 2.5 mol %), tetra-«-butylammonium chloride 

(0.294 g, 1.06 mmol), potassium acetate (0.294 g, 3.00 mmol), and the aryl iodide (1.00 
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mmol). The flask was affixed with a reflux condenser and sealed by a septum. The flask 

was flushed with a rapid stream of dry nitrogen and a nitrogen atmosphere was maintained 

throughout the course of the reaction. 2,3-Dihydrofuran (0.70 g, 0.76 mL, 10 mmol) and 

DMF (2 mL) were injected sequentially. The reaction was heated to 80 °C and monitored 

by thin layer chromatography. Once all of the starting material had been consumed, the 

mixture was combined with ether (25 mL) and poured into a separatory funnel containing 

saturated ammonium chloride (50 mL). The organic layer was isolated, dried over 

anhydrous MgS04, filtered, concentrated in vacuo, and columned over silica gel using 

either hexane or a mixture of hexane and EtOAc. 

2-Phenyl-2,3-dihydrofuran (Table 4, entry 1)62 

This compound was purified over silica gel using 10:1 hexane / EtOAc. NMR 

(CDCI3) Ô 2.58 (dddd, 1 H, / = 12.9 Hz, / = 8.4 Hz, / = 2.4 Hz, 7 = 2.4 Hz, CHH-

C=C), 3.38-(dddd, 1 H, / = 12.9 Hz, / = 10.2 Hz, 7 = 2.4 Hz, / = 2.4 Hz, CHH-C=C), 

4.92 (ddd, 1 H, / = 2.7 Hz, y = 2.7 Hz, / = 2.7 Hz, Ph-CH), 5.49 (dd, 1 H, / = 10.8 

Hz, / = 8.4 Hz, Qi=CH-0), 6.43 (dd, 1 H, 7 = 5.0 Hz, / = 2.6 Hz, CH=CH-0), 7.23 -

7.34 (m, 5 H, aromatic Hs); 13c NMR (CDCI3) 6 37.79, 62.24, 98.91, 125.48, 

127.50, 128.40, 142.94, 145.21; IR(neat) 3087, 3062, 3031, 2932, 1728, 1620, 1495, 

1450,1136,1051, 1001,941,758,698 cm-1; HRMS: calcd for CioHioO m/z 

146.07317, found m/z 146.07317. 

(4-EthoxycarbonylphenyI)-2,3-dihydrofuran (Table 4, entry 2) 

This compound was purified over silica gel using 4:1 hexane / EtOAc. ^H NMR 

(CDCI3) 6 1.39 (t, 3 H,7 = 6.9 Hz. CH3), 2.56 (dddd, 1 H,7= 15 Hz,7 = 8.1 Hz,7 = 

2.4 Hz, 7 = 2.4 Hz, C=C-CHH), 3.12 (dddd, 1 H, 7 = 15 Hz, 7 = 11.1 Hz, 7 = 2.4 Hz, 7 
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= 2.4 Hz, C=C-CHH), 4.37 (q, 2 H, / = 6.9 Hz, CO2CH2), 4.96 (dd, 1 H, / = 5.1 Hz, 

J = 2.7 Hz, Ar-CH-C=C), 5.56 (dd, 1 H, 7 = 10.8 Hz, / = 5.1 Hz, CH=CHO), 6.46 

(dd, 1 H, y = 5.1 Hz, y = 2.4 Hz, CH=CHO), 7.41 (d, 2 H, / = 8.4 Hz, aromatic Hs), 

8.03 (d, 2 H, / = 8.4 Hz, aromatic Hs); 13c NMR (CDCI3) 6 14.32, 37.95, 60.89, 

81.63, 98.97, 127.26, 128.63, 128.77, 145.24, 148.05, 166.80; IR (neat) 3101, 2982, 

2937, 1717, 1622, 1612,1367, 1275, 1177, 1136, 1103, 1051, 770, 706 cm-l; HRMS 

calc for C13H14O3 m/z 218.09430, found m/z 218.09411; Anal calc for C13H14O3: C, 

71.56; H, 6.42. Found: C, 71.80; H, 6.26 

2-(2-ForniylphenyI)-2,3-dihydrofuran (Table 4, entry 3) 

This compound was purified over silica gel using 4 :1 hexane / EtOAc to afford the 

desired product. % NMR (CDCI3) 62.16 (dddd, 1 H, / = 12 Hz, / = 4.5 Hz, / = 2.4 

Hz, / = 2.4 Hz, CHH-C=C), 3.33 (dddd, 1 H, 7 = 12 Hz, / = 4.8 Hz, 7 = 2.4 Hz, J = 

2.4 Hz, Cim-C=C), 4.86 (dd, IH, 7 = 5.1 Hz, 7 = 2.4 Hz, Ar-CH), 6.24 (dd, 1 H, 7 = 

11.1 Hz, 7 = 7.5 Hz, CH=CH-0), 6.45 (dd, 1 H, 7 = 2.4 Hz, 7 = 2.4 Hz, CH=CH-0), 

7.43 (ddd, 1 H, 7 = 7.5 Hz, 7 = 7.5 Hz, 7= 1.5 Hz, aromatic H), 7.56 (ddd, 1 H, 7 = 

7.5 Hz, 7 = 7.5 Hz, 7 = 1.5 Hz, aromatic H), 7.62 (dd, 1 H, 7= 7.5 Hz, 7= 1.2 Hz, 

aromatic H), 7.79 (dd, 1 H, 7 = 7.5 Hz, 7 = 1.2 Hz, aromatic H), 10.07 (s, 1 H, CHO); 

13c NMR (CDCI3) 5 38.12, 79.20, 99.00, 125.49, 127.40, 131.90, 133.98, 134.55, 

144.89,145.80 (missing aldehydic carbon); IR(neat) 3101, 3072,3033,2927,2740, 

1703, 1622, 1601, 1573, 1450, 1200, 1139, 1051, 935, 947, 756, 735 cm-1; HRMS : 

calcd for C11H10O2 m/z 174.06808, found m/z 174.06823; Anal calc for C11H10O2: C, 

75.86; H, 5.75. Found C: 70.61; H, 5.52. (Apparentiy this sample decomposed during 

shipping to Galbraith Laboratory for elemental analysis.) 
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2-(2-Nitrophenyl)-2,3-dihydrofuran (Table 4, entry 4) 

This compound was purified over silica gel using 8 :1 hexane / EtOAc. % NMR 

(CDCI3) S 2.44 (dddd, 1 H, / = 15.6 Hz, 7 = 7.2 Hz, / = 2.4 Hz, 7 = 2.4 Hz, CHH-

C=C), 3.40 (dddd, 1 H, / = 15. 6 Hz, / = 10.8 Hz, 7 = 2.4 Hz, 7 = 2.4 Hz, ani-C=C), 

4.95 (dd, 1 H, / = 5.1 Hz, 7 = 2.4 Hz, Ar-CH), 6.09 (dd, 1 H, / = 10.8 Hz, J = 7.2 Hz, 

CH=CH-0), 6.50 (dd, 1 H, / = 5.1 Hz, / = 2.4 Hz, CH=CH-0), 7.44 (ddd, 1 H, 7 = 

8.4 Hz, J - 8.4 Hz, J = 1.5 Hz, aromatic H), 7.65 (ddd, 1 H, / = 8.4 Hz, / = 8.4 Hz, J 

= 1.5 Hz, aromatic H), 7.73 (dd, 1 H, / = 7.8 Hz, J = 1.5 Hz, aromatic H), 8.08 (dd, 1 

H, / = 8.4 Hz, J = 1.2 Hz, aromatic H); NMR (CDCI3) 5 38.23, 78.35, 99.21, 

124.77, 126.98, 127.98, 132.88, 139.64, 144.05, 146.38; IR(neat) 3107, 2930, 2862, 

1624,1610,1526,1342,1136, 1049,1016,939, 854,789,766,708 cm-l; HRMS: 

calcd for C10H9NO3 m/z 191.05825, found m/z 191.05781; Anal calc for C10H9NO3: C, 

62.83; H, 4.71. Found: C, 63.45; H, 4.83. (Apparently this sample decomposed during 

shipping to Galbraith Laboratory for elemental analysis.) 

2-(2-Methoxyphenyl)-2,3-dihydrofuran (Table 4, entry 5) 

This compound was purified over silica gel using 8 :1 hexane / EtOAc. ^H NMR 

(CDCI3) 5 2.42 (dddd, 1 H, / = 15 Hz, / = 8.1 Hz, / = 2.4 Hz, 7 = 2.4 Hz, CHH-

C=C), 3.11 (dddd, 1 H, 7 = 15 Hz, 7 = 10.8 Hz, J = 2.4 Hz, J =2.4 Hz, Cffii-C=C), 

3.82 (s, 3 H, OCH3), 4.91 (dd, IH, 7 = 5.1 Hz, 7 = 2.7 Hz, Ar-CH), 5.79 (dd, 1 H, 7 = 

10.8 Hz, 7 = 8.1 Hz, CH=CH-0), 6.46 (dd, 1 H, 7 = 4.8 Hz, 7 = 2.4 Hz, CH=Œ-0), 

6.86 (d, 1 H, 7 = 8.1 Hz, aromatic H), 6.95 (dd, 1 H, 7 = 7.2 Hz, 7 = 7.2 Hz, aromatic 

H), 7.24 (ddd, IH, 7 = 8.1 Hz, 7 = 8.1 Hz, 7= 1.5 Hz, aromatic H), 7.39 (dd, 1 H, 7 = 

8.1 Hz, 7 = 8.1 Hz, 7 = 1.5 Hz, aromatic H); NMR (CDCI3) 5 36.93,55.25, 
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77.44, 99.19, 110.11, 120.43, 125.35, 128.17, 131.42, 144.97, 155.75; IR(neat) 

3066, 3004, 2937, 2860, 1620, 1603, 1491, 1475, 1286, 1242, 1138, 1053, 935, 754, 

706 cm'l; HRMS: calcd for C11H12O2 m/z 176.08373, found m/z 176.08399; Anal calc 

fbrCiiHi202: C, 75.00; H, 6.82. Found: C, 68.82, H, 6.50. (Apparently this sample 

decomposed during shipping to Galbraith Laboratory for elemental analysis.) 

2-(2-Naphthyl)-2,3-dihydrofuran (29) (Table 5, entry 1) 

This compound was columned over silica gel using 15:1 hexane / EtOAc. NMR 

(CDCI3) 5 2.65 (dddd, 1 H, / = 15.3 Hz, / = 8.4 Hz, / = 2.4 Hz, J = 2.4 Hz, C=C-

CÏÏH), 3.11 (dddd, 1 H, / = 15.3 Hz,7= 10.8 Hz, / = 2.4 Hz, J = 2.4 Hz, C=C-CIffl), 

4.97 (dd, 1 H, / = 5.1 Hz, J = 2.7 Hz, Ar-CH-O), 5.66 (dd, 1 H, / = 10.8 Hz, / = 8.4 

Hz, CH=CH-0), 6.50 (dd, 1 H, 7 = 5.1 Hz, 7 = 2.4 Hz, CH=CH-0), 7.41 - 7.47 (m, 3 

H, aromatic Hs), 7.77 - 7.83 (m, 4 H, aromatic Hs); 1% NMR (CDCI3) 5 37.81, 82.40, 

99.07, 123.60, 124.20, 125.79, 126.10, 127.59, 127.90, 128.47, 132.88, 133.09, 

140.19, 145.33; IR (mull) 1622,1462,1053,1016, 816, 747, 721 cm'l; HRMS: calcd 

for C14H12O m/z 196.08882, found m/z 196.08906. 

2-(3,4-Dimethoxyphenyl)-2,3-dihydrofuran (30) (Table 5, entry 2) 

This compound was columned over silica gel using 3 : 1 hexane / EtOAc. ^H NMR 

(CDCI3) 5 2.62 (dddd, 1 H, / = 15.0 Hz, / = 8.4 Hz, 7 = 2.4 Hz, / = 2.4 Hz, C=C-

CHH), 3.04 (dddd, 1 H, 7 = 15.0 Hz, J = 10.5 Hz, 7 = 2.4 Hz, 7 = 2.4 Hz, C=C-CHH), 

3.90 (s, 3 H, OCH3), 3.88 (s, 3 H, OCH3), 4.97 (dd, IH, 7 = 5.1 Hz, 7 = 2.4 Hz, Ar-

CH-O), 5.46 (dd, 1 H, / = 10.5 Hz, J = 8.7 Hz, CH=CH-0), 6.44 (dd, 1 H, 7 = 4.8 Hz, 

J = 2.4 Hz, CH=Qi-0), 6.83-6.92 (m, 3 H, aromatic Hs); 13c NMR (CDCI3) Ô 37.53, 
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55.68, 55.74, 82.21, 98.97, 108.70, 110.86, 117.89, 135.30, 145.05, 148.40, 148.94; 

IR(neat) 3103, 3003, 2937, 2837,1620,1593,1518, 1466, 1443, 1263,1236, 1163, 

1138,1051,1020,914,731 cm-1; HRMS: calcd for C12H14O3 m/z 206.09430, found 

m/z 206,09456. 

2-(3,4,5-TrimethoxyphenyI)-2,3-dihydrofuran (31) (Table 5, entry 3) 

This compound was purified over silica gel using 3 :1 hexane / EtOAc. NMR 

(CDCI3) 5 2.62 (dddd, 1 H, 7 = 15.3 Hz, / = 9.6 Hz, 7 = 2.4 Hz, / = 2.4 Hz, C=C-

CHH), 3.06 (dddd, 1 H, / = 15.3 Hz, 7 = 10.8 Hz, / = 2.4 Hz, 7 = 2.4 Hz, C=C-CHH), 

3.84 (s, 3 H, OCH3), 3.87 (s, 6 H, OŒs's), 4.97 (dd, IH, 7 = 5.1 Hz, 7 = 2.7 Hz, Ar-

CH-0), 5.45 (dd, 1 H,7 = 10.8 Hz, 7= 8.7 Hz, (3i=CH-0), 6.45 (dd, 1 H, 7 = 5.1 

Hz, 7 = 2.4 Hz, CH=CH-0), 6.59 (s, 2 H, aromatic Hs); 1% NMR (CDCI3) 5 37.75, 

55.97, 60.73, 82.39, 99.14, 102.29, 137.11, 138.54, 145.11, 153.20; IR(neat) 3050, 

1620, 1593,-1508, 1464, 1420, 1360, 1236, 1130, 1053, 1011, 731, 708 cm-1; HRMS: 

calcd for CisH^gO^ m/z 236.10486, found m/z 236.10501. 

General procedure for the arylation of 2-aryldihydrofuran 

In a dry 25 mL round bottom flask equipped with a side arm and a stirring bar were 

placed palladium acetate (0.(X)35 g, 3.0 mol %), PPh3 (0.12 g, 9.0 mol %), silver 

carbonate (0.276 g, 1.00 mmol), the 2-aryl-2,3-dihydrofuran (0.50 mmol), and the aryl 

iodide (0.55 mmol). The flasked was affixed with a reflux condenser, the apparatus was 

sealed, flushed with nitrogen, and a positive atmosphere of nitrogen was maintained with 

a bubbler. Acetonitrile (6 mL) was injected, the mixture was heated to 80 ®C and the 

reaction was followed by thin layer chromatography. Once all of the starting alkene has 
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been consumed, the reaction mixture was filtered through a plug of Celite to remove the 

silver salts, and the solids were washed with ether (3 x 25 mL). The filtrate was poured 

into a separatory funnel and washed with saturated ammonium chloride (50 mL). The 

organic layer was isolated, dried over anhydrous MgS04, filtered, concentrated in vacuo, 

and columned over silica gel to afford the desired rra/w-2,5-diaryl-2,5-dihydrofuran. The 

results are found in Table 6. 

/rfl/is-2-(2-NaphthyI)-5-(3,4-dimethoxyphenyI)-2,5-dihydrofuran (32) (entry 

1). 

This compound was purified over silica gel using 5 :1 hexane / EtOAc. NMR 

(CDCI3) 6 3.89 (s, 3 H, OCH3), 3.92 (s, 3 H, OCH3), 6.08 - 6.09 (m, 2 H, Ar-CH-

O's), 6.15 - 6.20 (m, 2 H, HC=CH), 6.87 - 6.98 (m, 3 H, aromatic Hs), 7.46 - 7.52 (m, 

3 H, aromatic Hs), 7.82 - 7.87 (m, 4 H, aromatic Hs); NMR (CDCI3) 5 55.85, 

55.94, 88.17, 88.22, 109.86, 111.14, 118.93, 124.35, 125.14, 125.88, 126.05, 

127.62, 127.89, 128.34, 130.28, 130.38, 133.12, 133.31, 133.97, 138.20, 148.86, 

149.18; IR(neat) 3057, 3005,2937, 1602, 1516, 1464, 1261, 1235, 1155, 1142, 1059, 

1028,910, 858, 817,790,754,730 cm-1; HRMS: calcd for C22H20O3 m/z 332.14125, 

found m/z 332.14091. 

/ra/is-2,5-bis(3,4-Trimethoxyphenyl)-2,5-dihydrofuran (33) (entry 3). 

This compound was purified over silica gel using 2:1:1 hexane / EtOAc / methylene 

chloride. iH NMR (CDCI3) S 3.88 (s, 6 H, 0CH3's), 3.90 (s, 6 H, OCHs's), 5.98 (s, 

2 H, Ar-CH-O's), 6.08 (s, 2 H, CH=CH), 6.85 - 6.94 (m, 6 H, aromatic Hs); 1% NMR 

(CDCI3) ô 55.59, 55.70, 87.64, 109.50, 110.79, 118.71, 130.12, 133.68, 148.57, 
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148.87; IR (neat) 3008, 1591, 1518, 1466, 1448, 1267, 1234, 1151, 1140, 1055, 1024, 

854, 810,733 cm*^; HRMS: calcd for C20H22O5 m/z 342.14673, found 342.14660. 

/ra/is-2,5-bis(3,4,5-Trimethoxyphenyl)-2,3-dihydrofuran (entry 4) 

This compound was purified over silica gel using 2:1:1 hexane / EtOAc / methylene 

chloride. NMR (CDCI3) 5 3.79 (s, 6 H, OCHg's) 3.84 (s, 12 H, OCHg's), 5.94 (s, 

2 H, Ar-CH-O's), 6.06 (s, 2 H, CH=CH), 6.57 (s, 4 H, aromatic Hs); 13C NMR 

(CDCI3) 5 55.94, 60.24, 60.65, 88.18, 103.30, 130.19, 136.65, 153.28; IR(neat) 

3078, 2999, 2941, 2839, 1593, 1506, 1464, 1420, 1327, 1234, 1126, 1009, 912, 733 

cm'l; HRMS: calcd for C22H26O7 m/z 402.16786, found m/z 402.16741. 

General procedure for hydrogenating the /ra/t5-2,5-diaryI-2,5-

dihydrofurans 

In a 50 mL round bottom flask equipped with a side arm with a Teflon stopcock and a 

stirring bar was weighed platinum oxide (23 mol %). The flask was injected with EtOAc 

(3 mL) and flushed with hydrogen gas for five minutes. Stirring was initiated and the 

catalyst was flushed with hydrogen for another five minutes before a gas buret was 

attached to the flask via the side arm. With the stopcock closed and the gas buret attached, 

the stirring was stopped for ten minutes to check for leaks. The alkene (0.75 mmole), 

dissolved in EtOAc (3 mL), was then injected via the side arm. Stirring began 

immediately and the reaction was stopped when the theoretical amount of hydrogen had 

been taken up. The reaction mixture was filtered through a plug of silica gel and 

concentrated in vacuo. The crude product was then columned over silica gel using hexane 

and EtOAc, and concentrated in vacuo to afford the desired product. 
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/raiis-2-(2-Naphthyl)-5-(3,4-ciimethoxyphenyl)tetrahydrofuran (11)^8 

This compound was purified over silica gel using 5:1 hexane /EtOAc. NMR 

(CDCI3) 5 1.97 - 2.12 (m, 2 H, %), 2.4 - 2.57 (m, 2 H, CH2), 3.87 (s, 3 H, OCH3), 

3.91 (s, 3 H, OŒ3), 5.27 (t, 1 H, / = 7.2 Hz, Ar-CH-0), 5.42 (t, 1 H, / = 7.2 Hz, 

Ar'CH-0), 6.85 (d, 1 H, / = 8.4 Hz, aromatic H), 6.95 - 7.01 (m, 2 H, aromatic Hs), 

7.43 - 7.51 (m, 3 H, aromatic Hs), 7.80 -7.87 (m, 4H, aromatic Hs); NMR (CDCI3) 

(tiiere are some overlapping signals) 8 35.60, 55.83, 81.22, 81.33, 108.69, 110.79, 

117.75, 123.82, 125.51, 125.96, 127.59, 127.77, 128.08, 132.65, 133.17, 135.81, 

141.01, 148.07,148.83; IR(neat) 3055, 2964, 2907, 1514, 1462, 1448, 1258, 1124, 

1028,910, 860, 818,737,704, 662 cm-1; HRMS: calcd for C22H22O3 m/z 334.15690, 

found 334.15678; Anal calc for C22H22O3: C, 79.04; H, 6.59. Found: C, 78.77; H, 

6.75. 

/rans-2,5-bis(3,4-DimethoxyphenyI)tetrahydrofuran (3)46.58 

This compound was purified over silica gel using 2:1:1 hexane / EtOAc / methylene 

chloride. ^H NMR (CDCI3) 6 1.85 - 1.91 (m, 2 H, CH2), 2.29 - 2.37 (m, 2 H, CH2), 

3.76 (s, 6 H, 0CH3's), 3.80 (s, 6 H, 0CH3's), 5.10 (t, 2 H, / = 6.6 Hz, Ar-CH-O's), 

6.73 - 6.88 (m, 6 H, aromatic Hs); NMR (CDCI3) S 35.37, 55.57 (two peaks), 

80.82, 108.48, 110.59, 117.48, 139.76, 147.79, 148.57; HRMS: calcd for C20H24O5 

m/z 344.16238, found m/z 344.16215; Anal, calc for C20H24O5: C, 69.76; H, 6.98, 

found: C, 69.81; H, 7.01. 
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/ra/is-2,5-bis(3,4,5-TriinethoxyphenyI)tetrahydrofuran (4)^6 

This compound was columned over silica gel using 2:1:1 hexane / EtOAc / 

methylene chloride. iR NMR (CDOg) 5 1.89 - 1.95 (m, 2 H, %), 2.38 - 2.41 (m, 2 

H, CH2), 3.78 (s, 6 H, OCHg's), 3.80 (s, 12 H, OCHg's), 5.13 (t, 2 H, / = 6.9 Hz, 

Ar-CH-O's), 6.56 (s, 4 H, aromatic Hs); NMR (CDCI3) 5 35.53, 56.00, 60.72, 

81.30, 102.22, 136.86, 139.11, 153.12; IR(neat) 3005, 2941, 2839, 1591, 1506, 

1464,1418,1329,1234,1126, 1070, 1039,910,783,734 cm'l; HRMS: calcd for 

C22H28O7 nVz 404.18351, found m/z 404.18349. 
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PART m. PALLADIUM-CATALYZED INTERMOLECULAR VINYLATIONOF 

CYCLIC ALKENES 
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INTRODUCTION 

There are many examples of palladium(0)-catalyzed cross-coupling reactions of vinylic 

halides and acyclic alkenes (eq 1).^ ^ This reaction (Scheme I) begins by oxidative 

H 

Scheme I 

^C=C^ + H2C=CHR' 
"X 

cat Pd(0) 

EtsN 

R. .H ^C=C^ 
ir ^CH=CHR' 

(1) 

w + Pd(0) 

H' 
"^C=C'^ H PdX 

I 
'CH-CHR' -HPdX 

)C=C^ 
^PdX 

H2C=CHR' 

R. ̂C=C^ 
iV ^CH=CHR' 

HPdX EtjN Pd(0) EtgNHX 

addition of a vinylic halide onto zerovalent Pd to afford a reactive alkenyl-palladium halide 

species. The latter then adds in a syn 1,2-fashion across the double bond of an acyclic 

alkene to afford a new, a-organopalladium species, followed by bond rotation so that a P-

hydrogen is cis to the palladium, and subsequent syn elimination of palladium hydride 

affords the 1,3-diene. 

When cyclic alkenes arc employed, no bond rotation is possible after the 1,2-addition. 

Thus, there is a syn elimination of palladium hydride away from the vinylic group to 

afford only 1,4-diene (Scheme II). 
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Scheme n 

Tf TJ 

There are comparatively fewer examples of the Pd-mediated or catalyzed vinylation of 

cyclic alkenes, and these few examples will now be discussed. Larock, Bernhardt, 

and Driggs'^ reacted 3-chlorocyclohexene with (E)-1 -butenylmercuric chloride catalyzed by 

Li2PdCl4 to afford (£)-l-(3-cyclohexenyl)hexene in fair yield (eq 2). This 

interesting reaction (Scheme HI) begins with a transmetallation reaction between the 

vinylmercurial and PdCU^- to generate a vinylpalladium species 1. The latter then adds in 

a syn 1,2-fashion to the double bond of the allylic chloride to generate 2, which eliminates 

PdCl2 to afford the 1,4-diene. The mechanism suggests that this reaction is catalytic in 

Pd(II) and in fact it is. 

Larock and Takagi^ observed that 1,4-dienes 5 were formed as side products in their 

synthesis of ic-allylpalladium complexes 4 from the reaction of a vinylmercurial, 

Li2PdCl4, and cyclic alkenes (eq 3). Furthermore, Larock observed that when the reaction 

HPdX 

LizPdCl, /1-C4H9, 
(2) 

39% 
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Scheme m 

"-C4H,^C=CC;'' 
H"^ ^HgCl 

LizPdCk 
-2 LiCl 
-HgClz 

H 

"•^5c=cC" 
^PdCl 

PdCl 

n-C4H9^ 
PdCL 

R H Li2PdCl4 
C=C( ^ (3) ^C=C^ 

^HgCI ^ o, 
^c=c'' 

X). 
is run in the presence ofEtgN, 1,4-dienes were formed exclusively. The mechanism for 

the formation of 4 is interesting and deserves additional attention (Scheme TV). The 

reaction begins with a transmetallation reaction between the vinylmercurial and PdCU^- to 

generate vinylpalladium species 7. The latter then adds in a syn 1,2-fashion to the double 

bond of the cyclic alkene to afford an alkylpalladium species 8, which eliminates 
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Scheme IV 

LizPdCL» 

-2UC1 
-HgCl2 

R. .H ):c=c(" 
^PdCl 

O. 

PdCl 

8 

H 

R. HPda 

10 

PdCl 
H 

^;c=cc:^<^' 
H 

V 
11 12 

R. ̂c=cf 
H 

OPd- \_/)„ 

13 

palladium hydride to generate a 7C-complex 9. The latter then dissociates, and the 

palladium hydride complexes to the face of the alkene opposite to the vinyl group to afford 

7C-C0mplex 10. Through a series of elimination and re-addition reactions of palladium 
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hydride, a-allylpalladium chloride 13 is finally generated, and the latter then collapses to 

the stable 7i-allylpalladium conq)lex 4. 

The formation of 5 presumably came firom the decomposition of Jt-complex 9 or 10 

(eq 4). Larock postulated that the addition of a good ligand or base such as EtgN to 

destroy the 7C-C0mplex or neutralize the HQ generated ftom the reductive elimination of 

palladium hydride would increase the rate of formation of 5. Table 1 summarizes the 

results of Larock and Takagi's efforts. Only 5 is generated in the presence of EtgN 

(entries 4 and 7). In the absence of this base, the rate of formation of 4 is competitive to 

that of 5. Cyclopentene and cycloheptene afford high yields of 1,4-diene (entries 2,4,7, 

and 9). Cyclooctene is relatively unreactive (entry 10), and cyclohexene proved to be inert 

(entry 8). " 

There are only two examples of the Pd(0)-catalyzed vinylation of cyclic alkenes 

affording the corresponding 1,4-diene. Kim et al.^ reported a cross-coupling reaction 

between a vinylic bromide and cyclohexene (eq 5). 

9 or 10 5 (4) 
-HPdCl 

CH302C^^__^^CH3 

CH3O2C. ^CHs l%Pd(OAc)2(PPh3)2 

" ^ Et3N. 100 °C. 12 h 
(5) 

CH302C^^__^^CH3 
+ 
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Table 1. Palladium-assisted vinylarion of cyclic alkenes 

Entry Organomercurial Cyclic Alkene Base 

1 
2 h" ~ ^HgCl o none 

EtgN 

CXr-=c'" none 
EtgN 

(CHahC^ xCHa 
h" ^HgCl 

none 

6 (CHghC^ 
' H' -Hga 

o 
o 

none 
EtsN 

EtsN 

EtsN 

10 EtsN 

2 Yields in parentheses are GC yields. 
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Product Yield(%)a 

. 20 
66 (96) 

C=C 

c=c 

c=c 

c=c 

c=c 

c=c 

c=c 

23 
(84) 

10 

0 
66 (96) 

67 

18 
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Karabelas and Hallberg^ reported a cross-coupling between l-iodo-l-cyclopentene and 

a trmethylvinylsilane (eq 6). Interestingly, a a-allylpalladium intermediate 14 was 

^TMS H _^TMS 
3 % Pd(0Ac)2 

(6) AgNOa 
EtgN 

DMSO 

25% 

proposed in this reaction mechanism, but surprisingly, there wasn't any jc-allylpalladium 

species generated in this reaction (Scheme V). 

Scheme V 

^C=C 
'''•PdCl 

Inspite of the potential usefulness of this Pd-based process for generating a variety of 

1,4-dienes, the vinylation of cyclic alkenes hasn't been fuUy explored by anyone. This 

fact prompted this author to explore the scope and limitations of this important 

methodology, and the results of this investigation are now reported. 
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RESULTS AND DISCUSSION 

AH vinylic iodides and triflates employed in this investigation were synthesized in the 

following manner. 2-Iodo-l-hexene was prepared from 1-hexyne using the published 

procedure of Kim, Patel, and Heck^ (eq 7). (E)-2-Iodostyrene was prepared from phenyl-

25-0,14d 
14% 

acetylene using the published procedure of Brown, Hamaoka, and Ravindran^ (eq 8). 

catecholborane ^2 
PhCaCH (8) 

41% 
(E)-l-Iodo-l-octen-3-one9 was prepared fixjm the reaction of acetylene and hexanoyl 

chloride followed by Nal^O (gq p) 1-Iodo-1 -octen-3-ol^O was prepared from the 

O 
1)..C.H.,C0aHCCl3 

2) Nal HI 
72% 

reaction of the corresponding enone witii NaBH^ (eq 10). l-Iodo-2-metiiylpropene^l was 

O OH 

"-C5Hn'™C=cC;® (10) 

« ' EtOH „ % 

prepared from the reaction of the corresponding vinylic bromide and Mg turnings in THF 

followed by h (eq 11). (E)-3-Iodo-3-hexene, (E)-1 -iodo-1 -hexene, and (E)-3,3-



www.manaraa.com

90 

1) Mg H 

2) h 
CHa' 

(11) 

67% 

dimethyl-l-iodo-l-butenel2 were all prepared by the hydroalumination-iodination of the 

corresponding alkynes (eqs 12 -14). (Z)- 1-Iodo- 1-hexene was prepared from 1-hexyne 

EtCaCEt 
1) DIBAL 

2) h 

Et. .Et 

26% 
I 

(12) 

n-C^HgCaCH 
1) DIBAL 

2) l2 

n-C4H9. 
H' 

:c=c:^ 

51 % 

H (13) 

(CH3)3CC3CH 
1) DIBAL 

2) h 

(CH3)3C, :c=c: 
'^I 

51 % 

(14) 

using the published procedure of Dieck and Heck^^ (gq 15), 1-Iodo-l-cyclohexene was 

1) CH3Li 
n-C^HgC S CH 

2) h 

3) K02CN=NC02K 
HOAc, CH3OH 

(15) 

53% 

prepared from the corresponding inflate using a procedure developed by Martinez, 

Alvarez, andFraite^'^ (eq 16). (Z)-l-Iodo-4-(2-tetrahydropyranoxy)-l-butenel5-17 was 

CX„ Mgl2 a. (16) 
Et3N, cyclohexane 

120 °C, 60 h 50% 

prepared from 3-butyn-l-ol (eq 17). (£^-l-Iodo-3-(2-tetrahydropyranoxy)-l-octene^<5 
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1) 0.5 equiv Hg(0Ac)2, l2 y jj 

H0(Œ2)2CSCH 2) DHP, PPTS THPO(Œ2)2^^"^^I 

3) K02CN=NC02K,pyr ^5 % 
HOAc, CH3OH 

was prepared from the corresponding alcohol and 3,4-dihydro-2//-pyran (eq 18). Trans-

OH OTHP 

„.c.„,.'^c=cC^ »-c=H.,>c=cC« 

100% 

p-iodoacrylonitrile^® was prepared from iodine and acetylene followed by CiiCN (eq 19). 

1) I2,160 "C 
HCaCH NC^ _ (19) 

2) CuCN.DMF, ^C-C^ 

100% 

Methyl (£)-3-bromopropenoate and the corresponding vinylic iodide^^ were prepared 

from the reaction of propiolic acid and the appropriate aqueous hydrohalic acid (eq 20). 3-

HO2CCSCH CH302C^^_^^H ^20) 

2) CH30H,H^ 
X = Br, 37 % 
X = I,  78% 

Iodo-2-cyclohexen-l-one was prepared from the reaction of 1,3-cyclohexanedione using a 

procedure developed by Piers and Nagakura^O (eq 21). Ethyl 2-bromopropenoate^l was 
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(21) 
PPh3,12 

prepared from 2-bromopropenoic acid, DEAD, PPhg, and EtOH (eq 22). (E)-l,2-

«^2 DEAD, PPhs n 

HOzC^^'^Br EtOH EtOaC^^^Br 
100% 

Diiodo-3-hexene and (E)-1,2-diiodo- 1-hexene were prepared from 3-hexyne and 1-

hexyne, respectively, using a procedure developed by Larson, Luidhardt, Kabalka, and 

Pagni22 (eqs 23 and 24). 2-Bromo-2-cyclohexen-l-one23 was prepared from 2-

EtCSCEt (23) 
alumina, 25 "C 

100% 

n-C4H9C=CH (24) 
alumina, 25 ®C I H 

94% 

cyclohexen-l-one (eq 25). Cyclohexenyl triflate was prepared from cyclohexanone using 
o o 

BT2 (25) 

EtsN 

82% 

the published procedure of McMurray and Scott^ (eq 26). 2-Hexenyl triflate was 
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O 

6 
1) LDA 

(26) 
2) PhNTf2 a 'OTf 

52% 
prepared from 1-hexyne using the published procedure of SummerviUe, Senklar, 

Schleyer, Dueber, and Stang^S (eq 27). 3-(Tiifluoromethylsulfonyloxy)cyclohex-2-en-l-

TfOH CHz 
n-C4H9C3CH " (27) 

-30 "C n-C4H9^ ~~OTf 

94% 

one was prepared from 1,3-cyclohexanedione using the procedure developed by Martinez, 

Alvarez, Casado, Subramanian, and Hanack^S (eq 28). 

1) NaH, DME 

2) TfzO, - 78 "C 

Vinylic iodides bearing electron-donating groups, as well as vinylic iodides bearing 

electron-withdrawing groups, were studied. Cycloalkenes of ring size 5 through 8, as 

well as 2,3-dihydrofuran and 3,4-dihydro-2//-pyran, were employed in this study to 

determine the scope and limitations of this Pd(0)-catalyzed process. Three different Pd(0) 

procedures were studied: procedure A27 (2.5 mol % Pd(0Ac)2,1 equiv TBAC, 3 equiv 

KO Ac or NaOAc, DMF, at 25 °C or 80 °C), procedure B28.29 (30 mol % Pd(0Ac)2,9.0 

mol % PPh], 2.0 equiv Ag2C03, CH3CN at 25 °C or 80 °C), and procedure 

(procedure A plus 2.5 mol % PPhg). 
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Initially, all reactions were conducted at 25 °C, and at 80 °C if the reaction at the former 

temperature was too sluggish. The results of this investigation are summarized in Table 2. 

The following observations have been made in the course of this investigation. Using 

procedure A, simple alkyl-containing vinylic iodides react sluggishly at 25 °C, but when 

the reactions are heated to 80 °C, the reactions easily go to completion. Cyclopentene is 

the most reactive of all the alkenes employed in this investigation as it produced cross-

coupled products even at room temperature, and good to excellent yields of 1,4-dienes are 

generally obtained. Cycloheptene has proven less reactive and tends to produce bad 

mixtures of 1,4-and 1,5-dienes. The latter product presumably arises from the readdition 

of HPdl to the alkene and elimination to afford the 1,5-diene. Cyclooctene is unreactive 

and gives bad mixtures usually containing several products. Cyclohexene and 3,4 -

dihydro-2^-pyran are essentially inert. 2,3-Dihydrofuran produces two to three different 

products. The more highly substituted the vinylic iodide is, the slower the reaction 

(entries 43 - 48). In these cases, the fact that (E)-1 -iodo-2-methylpropene and (E)-3-

iodo-3-hexene are also unstable at 80 °C may also explain why many unidentified products 

and none of the 1,4-dienes were produced. 

Certain functional groups also appeared to inhibit the reaction. For example (E)-l-

iodo-l-octen-3-ol (entries 38 - 42) and rra/w-P-iodoacrylonitrile (entries 102 - 105) 

apparentiy inhibited the cross-coupling reaction. When the former vinylic iodide was 

converted to a THP ether, the desired product was produced in good yields (entries 97 -

101). If the alkyl group is rather large, the reaction tends to be slower and the yield of the 

1,4-diene is also lower (entries 77 and 78). 
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Table 2. PalIadium(0)-catalyzed intennolecular vinylation of cyclic alkenes 

Entry Vinylic Halide Cyclic Alkene Base Procedure® 

1 
2 

CH. 

.c. o KOAc 
NaOAc 

A 
A 

O 
KOAc 
NaOAc 
Ag2C03 

A 
A 
B 

O 
KOAc 
NaOAc 
AgaCOs 

A 
A 
B 

10 
11 O 

^ See text for explanation of procedures. 
^ All ratios reflect the ratio of 1,4- to 1,5-dienes. 
c Ratio was determined by gas chromatography. 

Some 2-butyl- l-octene-3-yne was also observed. 

KOAc 
NaOAc 
AgzCOg 

A 
A 
B 
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Time (h) Temp (°C) Product b Yield (%) 

r 
216 25 56 
216 25 \ I 71 

216 
216 
24 

CHz 

25 
25 
80 

n-C4H9' % 0 
0 
0 

Œ, 

48 25 (1:1) 10=.d 
48 25 / \ (2:1) 10c.d 
24 80 \ / 81 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

ÇH, 

•2 O ® 

13 Ph^ _ KOAc A 
14 \ / NaOAc A o 

15 KOAc A 
16 f 1 NaOAc A 
17 KOAc A 
18 NaOAc A 
19 KOAc A 
20 NaOAc A 
21 AgiCOg B 

22 KOAc A 
23 / \ NaOAc A 
24 \ / KOAc A 
25 ' NaOAc A 

® 5 % Pd(0Ac)2 was employed in this reaction, 
f Only vinylic iodide and its dimer were recovered. 
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Time (h) Temp (°C) Product b Yield (%) 

CHz 

24 80 n-C4H9^^^ 42 

168 
168 

25 
25 

™;c=c''' 
77 
94 

216 
216 
216 
216 
216 
216 
48 

25 
25 
80 
80 
80 
80 
80 

X) 
0 
0 
0 
0 
Oe/ 
Oe^ 

47 

216 
216 
48 
48 

25 
25 
80 
80 U (3:1) 

(1:1) 

0 
0 

94 
80 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

26 H \ ) AgaCOs B o 
27 ^—s. KOAc A 
28 r 1 NaOAc A 

o _ . 29 I I KOAc A 
30 \ X NaOAc A 

32 KOAc A 
33 \\ / NaOAc A 
34 Ag2C03 B 

35 ^ S KOAc A 
36 || J NaOAc A 
37 Ag2C03 B 

8 Two isomers of mono-vinylated and two isomers of bis-vinylated cyclooctene were 
observed by GCVMS. The yield was not determined. 

^ A trace of the symmetrical 1,3-diene was also produced. 
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Time (h) Temp (°C) Product ^ Yield (%) 

24 80 86 
c—n 

Ph 
C=C 

216 25 Ph H 0 
216 25 0 
48 80 H II —g 
48 80 k J — g 
48 80 ^/ 0 

24 80 H 68 h 
24 80 H" \ 60 h 
24 80 \ / 52 

'â : » 

48 80 L J 34 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure® 

38 
39 
40 
41 
42 

rt-CsHii 

OH 

H' 
;c=c O 

KOAc 
NaOAc 
KOAc 
NaOAc 
AgiCO] 

A 
A 
A 
A 
B 

43 
44 

CH3 

Œ3' 
^c=cr 

H KOAc 
NaOAc 

A 
A 

45 
46 
47 
48 

KOAc 
NaOAc 
KOAc 
NaOAc 

A 
A 
A 
A 

49 
50 O 

KOAc 
NaOAc 

A 
A 

^ Only the dimer of the vinylic iodide was observed. 
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Time (h) Temp (°C) Product b Yield (%) 

OH 
216 25 I 0 
216 25 0 
96 80 0 
96 80 0 
96 80 0 

C=C 

C=C 

IS g 

216 25 Et. Et 0 
216 25 0 
24 80 \ / — i 
24 80 ^ ' — i 

24 
24 

80 
80 

1 
i 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

51 
52 
53 
54 
55 
56 
57 

n-C4Hg^ o KOAc 
NaOAc 
KOAc 
NaOAc 
KOAc 
KOAc 
KOAc 

A 
A 
A 
A 
A 
A 
A 

58 
59 
60 O 

KOAc A 
NaOAc A 
AgaCOs B 

61 
62 
63 O 

KOAc A 
NaOAc A 
AgzCOg B 

64 o Ag2C03 B 

j HMPA was employed as the solvent in this reaction. 
k CH3CN was employed as the solvent in this reaction. 
'A combination ofH^A/ Œ3CN/DMF (1:1:1) was employed as the solvent 

in this reaction. 
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Time 

216 
216 
24 
24 
48 
48 
48 

216 
216 
24 

216 
216 
24 

48 

104 

Temp (°C) Product ^ Yield (%) 

25 96 

fo "O % 
80 17 
80 87 j 
80 96 k 
80 871 

80 0 
80 n-C4H9'^ ^ 0 
80 55 

25 (1:1) 60 
25 Y \ (1 :1) 56 
80 ( y 81 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

65 ^ / Ag2C03 B 

66 I AgzCO] B 0 
67 H \ / KOAc 

68 AgzOOg B O 

69 I ; AgzCO] B o 
70 Ag2C03 B 
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Time (h) Temp (°C) Product b Yield (%) 

24 80 n-C4H9^ \ / 51 

48 80 0 
C=C 

C=C 24 80 79 

48 80 51 

n-C4H9^ .H 
24 80 88 

24 80 " \_/ 43 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

71 /S. ^ KOAc A 
72 r n NaOAc A 
73 \ I KOAc A 
74 I NaOAc A 

75 / \ Ag2C03 B 

O 

76 .0 AgaCOs B 

O 

79 k J AgzCOs B O 
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Time (h) Temp (°C) Product ^ Yield (%) 

(CHg^C 

24 80 

(Œ3)3C H 

" T O  0 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

80 
81 
82 

(CH3)3C^ 

H'" O 
KOAc 
NaOAc 
AgaCOs 

A 
A 
B 

83 
84 
85 

KOAc 
NaOAc 
Ag2C03 

A 
A 
B 

86 
87 
88 o KOAc 

NaOAc 
AgaCOs 

A 
A 
B 

89 
90 
91 0 

KOAc 
NaOAc 
AgzCOg 

A 
A 
B 

A mixture of many inseparable products was observed. 
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Time (h) Temp (°C) Product b Yield (%) 

(CHskCs xH 
48 80 h" (1:1) 86 
48 80 / \ (1:1) 63 
24 80 \ / 65 

96 80 (CHshC^ _..g 

96 80 y \ ... g 
48 80 I J — g 

24 80 (CH3)3Cs ç _ ç x H o  . . .m 

24 80 ^ ̂  . . .m 
24 80 \=J 52 

96 80 g 

72 80 X J 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

92 THP0(CH2)2"^ o KOAc 
NaOAc 

A 
A 

94 
95 
96 O 

KOAc 
NaOAc 
AgzCOs 

A 
A 
B 

97 
OTHP 
I 
CH 

98 ;c=c( 
H I O 

KOAc 
NaOAc 

A 
A 

99 
100 
101 o KOAc 

NaOAc 
AgzCOs 

A 
A 
B 

102 
103 >-< o 

KOAc 
NaOAc 

A 
A 

" A complex mixture of diastereomers was afforded. 
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Time (h) Temp (°C) Product(s) Yield (%) 

96 80 THP0(CH2)2 \ / 79" 
96 80 \—' 49 n 

48 80 THP0(CH2)2*^ : 1) 100" 
48 80 / \ (1 : 1.5) 75 " 
24 80 \ / (1 :1.5) 86 " w  

OTHP 
72 - 80 ' H 74" 
72 80 «•C5Hii^^;C=CC[^^/^ 60" 

- o  

OTHP 

48 80 Qj 98" 
48 80 n-CsUn^ ;C=C 80" 
48 80 ^ 77 " 

NC. c=c 
72 25 H'^ 0 
72 25 0 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

104 x/X KOAc A 
105 \ / NaOAc A 

Î07 N% A 
108 H CsOAc A 

109 KOAc A 
110 NaOAc A 
111 I I KOAc A 
112 NaOAc A 

o 113 / \ KOAc A 
114 L ) NaOAc A 

o The ratio reflects the ratio of 1,3- to 1,4-diene. 
P This diene was contaminated with an unknown product. 
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Time 

72 
72 

48 
72 

120 

216 
216 
216 
216 

48 
72 

114 

Temp (°C) Product b Yield (%) 

80 Y ̂  0 
80 \ / 0 

CH302CŒ2Œ55^^ Œ3O2CV 

25 (1 : 12) 100 o 
25 (1:2) 96 0 
25 (1:99) 100 0 

25 0 
25 0 
80 0 
80 0 

C=C 25 )c=cr ^ 62 P 
25 H 56 P 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

115 
116 
117 

CHsOzC^ xH 

h" 
o  KOAc A 

NaOAc A 
AgzCOg B 

118 
119 

CHaOzC  ̂ H o  KOAc 
NaOAc 

A 
A 

120 
121 
122 
123 

O 
KOAc 
NaOAc 
CsOAc 
Na2C03 

A 
A 
A 
A 

124 
125 O  

KOAc 
NaOAc 

A 
A 

126 O  KOAc 

Q Only a tarry substance was afforded in this reaction. 
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Time (h) Temp (°C) Product b Yield (%) 

24 
24 
24 

25 
80 
25 

m 
m 

m 

24 
24 

25 
25 

CHaOzCCHzCH;^^/^ 100 
96 

3 
3 

20 
24 

25 
25 
25 
25 

(1:4) 
(3:1) 

23 
66 
— q 

— q 

192 
192 

72 

80 
80 

25 

O 

0 
0 

oq 
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Table 2. (continued) 

Entry Vinylic Halide Cyclic Alkene Base Procedure^ 

127 I I ; NaOAc A o 
o 128 f 1 KOAc A 

129 I J NaOAc A 

130 KOAc A 

ĉ " o 

131 CH2 KOAC A 

EiOzC^^Br 

' Only 2-bromophenol was observed by GC-MS. 
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Product b 
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It is important to note that there is retention of stereochemistry in these reactions. For 

example, the reaction between (Z)-l-iodo-l-hexene and cyclopentene produced only the 

cis isomer (entries 51-57,60-63, and 65). 

Vinylic halides bearing electron-withdrawing groups ("activated vinylic halides") are 

more reactive in these reactions when using procedure A than vinylic iodides bearing 

electron-donating groups. In fact, activated vinylic bromides will even react with 

cyclopentene at 25 "C. Unfortunately, in almost all of these cases, mixtures of 

regioisomers are produced when cyclopentene is employed (entries 106-108,120, and 

121). This complication is so severe in several cases that the regioisomer is the major 

isomer produced (entries 106 and 107) and in one case, it is the exclusive isomer produced 

(entries 118 and 119). Larock and Baker27 observed that CsOAc was effective in 

stopping the isomerization reaction in the synthesis of 3-phenylcyclooctene. Thus CsOAc 

was employed in entry 108. Unfortunately, the undesired isomer was produced with only 

a trace of the desired product With methyl (£)-3-iodopropenoate, cycloheptene is less 

reactive than cyclopentene and tends to require a longer reaction period and bad mixtures 

of side products are also produced (entries 113 and 114). 

One example of the incompatibility of these "activated vinylic halides" with this 

process is the reaction of 2-bromo-2-cycIohexen- 1-one with cyclopentene (entry 130). In 

this case, the sole product is 2-bromophenol. The mechanism of this unusal reaction 

presumably involves a Pd-catalyzed dehydrogenation process. Perhaps the only positive 

result coming &om the reaction of an activated vinylic halide is in the reaction of ethyl 2-

bromopropenoate with cyclopentene to produce only the desired product in 33 % yield 

(entry 131). 
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Procedure B solves many of the problems encountered widi procedure A. For 

example, cyclohexene, which is inert when the latter procedure was employed, reacted 

smoothly with alkyl-containing vinylic iodides under the conditions of procedure B to 

produce the desired 1,4-diene in a short period of time (entries 21,60, and 68). As 

reported by Larock, Gong, and Baker,29 procedure B when employed with aiyl halides 

inhibited the formation of regioisomers arising from palladium hydride re-addition to the 

3-aryl cycloalkene. In this investigation, procedure B also effectively suppressed the 

isomerization reaction associated with the vinylation of cycloheptene (entries 8,26,63, 

75, and 82), 2,3-dihydrofuran (entries 12, 34, 65, 76, and 88), and 3,4-dihydro-2//-

pyran (entries 37 and 91) when using procedure A. The only exception appears to be 

entry 96 in which two isomers were produced! Currently, there is no good explanation 

for this observation. Procedure B was ineffective in promoting the vinylation of 

cyclooctene, as this alkene was once again too inert to produce any desired product 

(entries 11,31,64, and 85). Procedure B also proved to be ineffective in overcoming the 

difficulties encountered when activated vinylic halides were employed as vinylating 

agents, as they are easily dimerized to symmetrical 1,3-dienes under these reaction 

conditions. 

Procedure C was briefly investigated as an alternative to procedure B since the latter 

employs expensive AgaCOs. Preliminary results indicated that only the symmetrical 

dimers of the vinylic iodides were formed as observed by GC-MS (eqs 27 and 28). A 

Procedure C 

24h (27) 

100% 
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PlrocedureC 

o 
24h 

100% 
2 

(28) 

possible explanation is that the PPhg is somehow promoting the dimerization reaction 

since this phenomenon is not observed when using procedure A. 

Vinylic diiodides were also investigated in this Pd-catalyzed process with hopes of 

obtaining triene products. While (E)-1,2-diiodo- 1-hexene and (£)-3,4-diiodo-3-hexene 

reacted readily at 25 °C with cyclopentene using procedure A, a number of products were 

observed by GC/MS. What's stiking about this reaction is that the naajor product 

produced in both reactions is l-(3-cyclopentenyl)hexyne (eqs 29 and 30). This compound 

was identified by comparing its mass spectrum with the mass spectrum of an authentic 

sample provided by Mr. Peter Johnson. It's presumed that die vinyl palladium iodide 

intermediate generated initially must somehow have eliminated an iodine atom and 

Procedure A /1-C4H9, (29) 

Procedure A (30) 
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migrated to the terminal end of the molecule before it finally adds as an alkynyl palladium 

iodide to cyclopentene.^o 

Vinylic triflates were also investigated since they are often easier to prepare than the 

corresponding iodide. The results of this research are summarized in Table 3. The 

following observations have been made in the course of this investigation. Once again, 

cyclopentene is the most reactive of all of the cyclic alkenes used as it cross-coupled even 

at room temperature (entries 1,13,19, and 20). In only two cases did cyclopentene fail to 

produce any of the desired product (entries 8 and 9). It is believed that the triflate 

decomposed under the phase-transfer reaction conditions affording the volatile, undetected 

alkyne. The decomposition reaction was inhibited when procedure B was employed for 

this reaction, and a good yield of the desired 1,4-diene was afforded (entry 10). 

Apparentiy, the choice of base is also critical. This is seen in entry 16 when NaOAc was 

used and the desired product was produced. KOAc apparentiy decomposed the triflate 

(entry 18). Cycloheptene produced high yields of regioisomers no matter what procedure 

was employed. Cyclohexene and cyclooctene proved to be unreactive. 
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Table 3. Palladium(0)-catalyzed vinyladon of cyclic alkenes with vinyl triflates 

Entry Vinyl Triflate Cyclic Alkene Base Procedure^ 

CX„ o 

o  

0  

KOAc 

2 r \ KOAc A 
3 / ) KOAc A 
4 \ / AgzCOs B 

AgaCOs B 

AgiCOg B 

Ag2C03 B 

^ See text for explanation of procedures. 
Ratio in parentheses reflects the amount of 1,4- to 1,5-dienes observed. 

^ Many unidentifiable products were produced. 
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Product b Time (h) Temp (°C) 
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Table 3. (continued) 

Entry Vinyl Triflate Cyclic Alkene Base Procedure^ 

CH2 
8 " KOAc A 

10 %^03 B 

O  11 Ag2C03 B 

o 12 /A Ag2C03 B 

13 %% AgaCOs B o  
,0, 

14 II I Ag2C03 B a 
15 II KOAc A 
16 NaOAc A 
17 I i V/ AgzCOg B 

^ No starting material or product was recovered. The triflate probably decomposed. 
® A trace amount of the triflate was recovered. 
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Time (h) Temp (°C) Product Yield (%) 

24 
24 
24 

25 
25 
80 

24 80 

24 80 

CHz 

(2:1) 

._d 

._d 
65 

c 

81 

24 80 

24 80 

n-C^ïJç' 

/1-C4H9' 

CH2 
67 

._d 

24 
24 
24 

25 
25 
25 

...d 
268 
59 



www.manaraa.com

Il 

127 

CONCLUSION 

A Pd(0)-catalyzed procedure for the vinylation of cyclic alkenes has been developed. 

This process using procedure A or B is the first generally useful procedure for preparing 

1,4-dienes in high yields under very mild reaction conditions. In procedure A, the choice 

of base is somewhat critical; KOAc in a vast majority of cases is far superior to NaOAc. 

The drawback to this procedure is that it tends to produce a mixture of regioisomers with 

some alkenes, and cyclohexene has been found to be unreactive. Procedure B effectively 

inhibits the isomerizadon reaction firequentiy encountered when using procedure A. 

Furthermore, cyclohexene has been successfully vinylated in a short period of time under 

these reaction conditions. The major drawback to procedure B is the employment of 

expensive Ag2C03. A number of functional groups can be accommodated in both 

procedures, but vinylic iodides bearing a hydroxyl or a nitrile group apparentiy inhibit tiie 

reaction. Vinylic iodides also bearing electron-withdrawing groups P to the iodide tend to 

produce bad mixtures of products regardless of the procedure employed. This process has 

also been found to retain the stereochemistry of the vinylic iodide. Thus stereoselective 

synthesis of 1,4-dienes is also possible. 
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EXPERIMENTAL SECTION 

Equipment 

NMR spectra were recorded on a Mcolet NT-300 spectrometer (operating at 300 MHz 

for hydrogen nuclei and 75 MHz for carbon nuclei). Infrared spectra were obtained on an 

IBM IR/98 FT-IR. Mass spectral data were obtained on a Kratos high resolution mass 

spectrometer. Gas chromatographic analyses were performed by using a Varian 3700 or a 

Hewlett Packard 5890 gas chromatograph equipped with a 3 % OV-101 on Chromasorb 

W packed column (Varian 3700 or HP 5890) or an HP-1 megabore column (HP 5890). 

Spectral information is provided only if the compound is not found in the literature, or if 

the spectral data available are less accurate. Initially, some of the 1,4-dienes were 

submitted to Galbraith Laboratories for elemental analyses, but in all cases, the alkenes 

decomposed during shipping. Consequendy, none of the following compounds have 

elemental analyses. 

Reagents 

The palladium acetate was donated by Johnson Matthey Co. Cyclopentene, cyclo-

heptene, cyclooctene, 2,3-dihydrofuran, 1-hexyne, 3-hexyne, phenylacetylene, n-butyl-

lithium, catecholborane, hexanoyl chloride, silver carbonate, propiolic acid, copper(I) 

iodide, copper(I) cyanide, 1,3-cyclohexanedione, triphenylphosphine, 3-butyn-l-ol, 

cyclohexanone, trifluoromethanesulfonic acid, and trifluoromethanesulfonic anhydride, 

tetra-M-butylammonium chloride, and 3,4-dihydro-2//-pyran were all obtained from 

Aldrich Chemical Company and used without further purification. NJ^- Dimethyl-
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formainide and acetonitiile were distilled 6om calcium hydride (CaH2) and stored over 

anhydrous molecular sieves. 

2-Iodo-l-hexene^ 

In a SO mL round bottom flask containing a stimring bar were added 1-hexyne (3.28 g, 

40 mmol, 4.60 mL) and HI (47 % in water, 11 mL). The flask was sealed, wrapped in 

aluminum foil, and stirred rapidly for 10 days at room temperature. The solution was 

poured into a separatory funnel containing water (50 mL) and ether (50 mL). The organic 

layer was separated and washed with water, saturated NazCOg, freshly prepared 10 % 

Na2S203, and water. The organic layer was dried over anhydrous MgS04, concentrated 

in vacuo, and distilled (88 - 92 ^C, 82 mm Hg) to afford the desired product in 14 % 

yield. NMR (CDCI3) 5 0.83 (t, 3 H, / = 7.5 Hz, CH3), 1.23 (sextet, 2 H, 7 = 7.5 

Hz, Œ2-CH2-CH3), 1.40 (quintet, 2 H, / = 7.5 Hz, Œ2-CH2-CH2), 2.29 (t, 2 H, 7 = 

7.5 Hz, C=C-CH2), 5.59 (d, 1 H, / = 1.5 Hz, C=CHH), 5.19 (d, 1 H, 7 = 1.5Hz, 

C=CHH); IR (neat) 3087, 2959, 2932, 1720,1616, 1466, 1427, 1379, 1213, 1151, 

1134, 1045, 891 cm-l. 

(£)-2-IodostyreneS 

In a dry 1(X) mL round bottom flask containing a stirring bar were added 

phenylacetylene (5.10 g, 50.0 mmol, 5.48 mL) and catecholborane (6.00 g, 50.0 mmol, 

5.33 mL). The mixture was stirred under a nitrogen atmosphere at 70 °C for two hours. 

After the mixture was cooled to room temperature, water (50 mL) was added, and the 

mixture was stirred for two hours at room temperature. The resulting solid boronic acid 

was collected by filtration, and washed free of catechol with ice-cold water (3 x 50 mL). 
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The boronic acid was then dissolved in ether (50 mL) and placed in a 500 mL round 

bottom flask. The solution was cooled to 0 °C, and aqueous sodium hydroxide (50 mL, 

37V) was then added, followed by 1% (15.2 g, 60.0 mmol) in ether (150 mL). The mixture 

was stirred for 30 minutes at 0 "C. The excess I2 was destroyed with freshly prepared 5 

% sodium thiosulfate. The organic layer was separated, washed with water, and dried 

over anhydrous magnesium sulfate. After the organic layer was filtered, and concentrated, 

the residue was distilled (74 1 mm Hg) to afford the desired vinylic iodide in 41 % 

yield. iR NMR (CDCI3) 5 6.82 (d, 1 H, / = 15.0 Hz, CH=CHPh), 7.27 - 7.35 (m, 5 

H, aromatic HS), 7.43 (d, 1 H, / = 15.0 Hz, CH=CHPh); IR (neat) 3101, 3059,1595, 

1570, 1495, 1171, 1018, 947, 727, 689, 667 cm-1. 

(F)'l-Iodo-l-octen-3-one^'^0 

A 250 mL round bottom flask precooled to 0 °C was flushed with acetylene for five 

minutes. Anhydrous carbon tetrachloride (100 mL) was added and acetylene was bubbled 

into it for five minutes. The flow of acetylene was stopped and aluminum chloride (15.6 

g, 117 mmol) was added to the mixture. Bubbling of this solution with acetylene resumed 

for another five minutes before hexanoyl chloride (13.5 g, 14.1 mL, 100 mmol) was 

added over a period of 20 minutes. Acetylene bubbling was resumed at 0 °C for four 

additional hours. The mixture was poured into crushed ice and water (300 mL). The 

organic layer was separated, and the aqueous layer was extracted with ether ( 3 x 50 mL). 

To the combined extracts was added hydroquinone (0.32 g) and the solution was dried 

over calcium chloride. The organic layer was filtered and the calcium chloride was 

washed with fresh carbon tetrachloride (25 mL). Hydroquinone (0.32 g) was added to the 

filtrate and the solvent was concentrated in vacuo to afford a greenish-yellow oil. 
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Fractional distillation (60 °C, 1 mm Hg) of the crude product afforded (£)-l-chloro-l-

octen-3-one in 77 % yield. To a solution of Nal (16.3 g, 108 mmol) in acetone (100 mL) 

was added (E)- 1-chloro- l-octen-3-one (12.35 g, 77.0 mmol). The contents were heated 

to reflux for four hours. The solids were then filtered and the bulk of the acetone was 

concentrated in vacuo. To this solution was added water (50 mL) which was then 

extracted with ether (4 x 50 mL). The combined extracts were washed with water, 5 % 

sodium thiosulfate and water again, dried over anhydrous MgS04, filtered, and 

concentrated in vacuo to afford the crude iodoenone. Recrystallization of the crude 

product from hexane afforded the desired (E)- 1-iodo-1 -octen-3-one (mp 37 - 38 oQ in 93 

% yield. iR NMR (CDOg) 5 0.82 (t, 3 H, / = 6.9 Hz, CH3), 1.23 - 1.24 (m, 4 H, 

CH2'S). 1.43 - 1.47 (m, 4 H, CH2's), 6.26 (d, 1 H, 7 = 14.4 Hz, ICH=CH), 6.50 (d, 1 

H,y= 14.4 Hz, ICH=CH). 

(E)-l-Iodô-l-octen-3-oll0 

To a 250 mL round bottom flask was added ethanol (70 mL). The flask was 

precooled to 0 °C with stirring for five minutes before sodium borohydride (0.40 g, 10.6 

mmol) was added. Stirring was continued for two additional minutes and then a solution 

of (Ej-1 -iodo-1 -octen-3-one (7.56 g, 30.0 mmol) in 10 mL of ethanol was added over a 

period of 1.5 - 2.0 hours. After the addition was complete, the solution was stirred for 6 

additional hours at 0 °C. The solution was concentrated in vacuo at 10 °C, and the residue 

was combined with pentane (100 mL) and water (50 mL). The aqueous layer was 

separated and extracted with pentane (3 x 50 mL). The combined pentane layers were 

washed once with sat. NaCl, dried over anhydrous MgS04, filtered, and concentrated in 

vacuo to afford the pure product (as established by GC and TLC) in 97 % yield. ^H NMR 
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(CDCla) 5 0.89 (t, 3 H, / = 6.9 Hz, Œ3), 1.30 (br s, 6 H, CH2's), 1.50 - 1.60 (m, 2 

H, Œ2), 4.06 - 4.14 (m, 1 H, CH-O), 6.34 (dd, 1 H, / = 0.9 Hz, / = 14.4 Hz, 

ICH=CH), 6.58 (dd, 1 H, / = 6.3 Hz, J = 14.4 Hz, ICH=QD; IR (neat) 3342, 3047, 

2957, 2858, 1607, 1466, 1379, 1340,1271, 1231, 1169, 1126, 1055, 945 cm-1. 

l-Iodo-2-methyIpropenel ̂  

In a flame-dried 1(X) mL round bottom flask equipped with an addition funnel and a 

stirring bar were placed magnesium turnings (1.07 g, 44.0 nunol) and THF (50 mL). 1-

Bromo-2-methylpropene (5.36 g, 40.0 mmol) in THF (10 mL) was added dropwise over 

a 30 minute period. After the addition was complete, the contents were refluxed for one 

hour. The solution was then cooled to 0 °C and was quenched with I2 (11.2 g, 44.0 

mmol) dissolved in THF (15 mL). The solution was allowed to come to room temperature 

overnight before it was quenched with saturated NH4CI and the organic and aqueous 

layers were separated. The aqueous layer was extracted with ether (2 x 50 mL). The 

organic layers were combined, washed with 5 % Na2S203, saturated NaCl, water, dried 

over Na2S04, filtered, concentrated in vacuo, and the residue was distilled under vacuum 

(60 "C, 100 mm Hg) to afford the vinylic iodide in 67 % yield. ^H NMR (CDCI3) 6 1.80 

(s, 6H, CHs's), 5.85 (s, 1 H, CH=C). 

l-Iodo-l-hexynei3 

A flame-dried 500 mL 3-necked round bottom flask equipped with an addition funnel, 

a reflux condenser, and a stirring bar was flushed with nitrogen and a positive nitrogen 

atmosphere was maintained. 1-Hexyne (10.2 g, 125 mmol) and ether (100 mL) were 

injected. Then methyllithium (102 mL, 1.40 M, 143 mmol) was added at such a rate so as 
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to cause gentle refluxing. Iodine (29.0 g, 114 mmol) dissolved in ether (75 mL) was 

added dropwise to the solution. After the addition was completed, the reaction was 

allowed to come to room temperature slowly, and the reaction was allowed to stir at room 

temperature overnight Water (60 mL) was added and the mixture was poured into a 

separatory funnel containing more water (90 mL). The layers were separated and the 

aqueous phase was extracted with ether (2 x 30 mL). The ether layers were combined, 

washed with freshly prepared 10 % Na2S203 (90 mL), dried over anhydrous MgS04, 

filtered, and concentrated in vacuo to afford a yellow oil. The crude product was distilled 

(75 °C, 20 mm Hg) to afford the desired alkynyl iodide as a colorless oil in 80 % yield. 

IH NMR (CDCI3) 6 0.88 (t, 3 H, / = 7.2 Hz, CH3), 1.34 - 1.50 (m, 4 H, CH2's), 2.33 

(t, 2 H, 7 = 6.6 Hz, CH2); IR(neat) 2959, 2934,2187 cm-1. 

(Z)-l-Iodo-l-hexenel 3 

In a 3-necked round bottom flask was added water (70 mL). The flask was cooled to 

-10 "C, and blanketed by a slow stream of nitrogen. Potassium hydroxide (28.1 g, 502 

mmol) was added and the alkaline solution was cooled back to -10 °C. Azodicarbonamide 

(23.4 g, 201 mmol) was added in portions at such a rate that the temperature of the 

mixture was never above 10 °C. After the addition was complete, the yellow mixture was 

allowed to stir for three hours at 0 - 5 "C. Ice-cold methanol (50 mL) was then added to 

the mixture at 0 °C. The bright yeUow dipotassium azodicarboxylate was vacuum filtered 

with a fritted funnel. The bright yellow solid was washed several times with ice-cold 

methanol to remove excess potassium hydroxide. The solid was then transferred to a 500 

mL round bottom flask containing a stirring bar. To the flask were added methanol (104 

mL) and 1-iodo-l-hexyne (5.20 g, 25.0 mmol). An addition funnel containing a mixture 
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of glacial acetic acid (20 mL) and methanol (52 mL) and a reflux condenser were attached 

to the flask. This mixture was added dropwise to the rapidly stirring dipotassium 

azodicarboxylate and iodoalkyne. After the addition was complete, ±e mixture was 

combined with ether (100 mL), and the organic layer was washed with water, and 

saturated Na2C03, concentrated in vacuo, and stirred in n-butylamine (15 mL) for one 

hour. The solution was diluted with ether (50 noL), washed with 5 % hydrochloric acid 

(50 mL) and then saturated Na2C03 (50 mL), dried over anhydrous MgSO^, filtered, and 

finally concentrated in vacuo to afford the desired vinylic iodide in 53 % overall yield. 

NMR (CDCI3) 5 0.85 (t, 3 H, 7 = 6.9 Hz, CH3), 1.32 - 1.35 (m, 4 H, CHz's), 2.05 -

2.08 (m, 2 H, C=CCH2), 6.07 - 6.10 (m, 2 H, CH=CH); IR (neat) 3066, 1739, 1610, 

1010,933 cm-1. 

(£)-l-Iodo-l-hexenel2 

To a solution of 1-hexyne (2.50 g, 30.5 mmol) in dry heptane (15 mL) was added 

diisobutylaluminum hydride (1.5 Af, 20 mL, 30.0 mmol) at a rate such that the 

temperature of the reaction remained below 40 ^C. The resulting solution was heated to 

50 "C for 2.5 hours, and then the heptane was removed under reduced pressure. The 

residue was diluted with dry THF (15 mL), cooled to -50 °C, and a solution of 1% (7.62 g, 

30.0 mmol) in THF (15 mL) was added. The cooling bath was removed, and the reaction 

mixture was warmed to room temperature and stirred overnight The reaction was cooled 

to 0 °C and quenched by dropwise addition of sulfuric acid (20 %) until the evolution of 

isobutane ceased. The mixture was then poured into ice containing sulfuric acid (20 %), 

and the mixture was extracted with hexane (2 x 50 mL). The hexane extracts were washed 

with saturated Na2S203 (20 mL) and 5 % Na2C03 (20 mL), dried over anhydrous 
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MgS04, and concentrated in vacuo to afford the crude product Bulb-to-bulb distillation 

of the residue (68-71 "C, 18 mm Hg) provided the desired vinylic iodide in 51 % yield. 

IH NMR (CDCI3) 5 0.88 (t, 3 H, 7 = 5.8 Hz, CH3), 1.22 - 1.47 (m, 4 H, Œa's), 2.02 

- 2.14 (m, 2 H, C=C-Œ2), 5.97 (dt, 1 H, / = 14.4 Hz, 7 = 1.5 Hz, C=CHI), 6.51 (dt, 1 

H, 7 = 14.4 Hz, J = 7.2 Hz, ai=CHI); JR (neat) 3049, 3007, 2928, 1607, 1466, 1435, 

1379, 1219, 1180, 1018, 949, 922, 860 cm'l. 

(E)-l-Iodo-3,3-dimethyI-l-butene 

This vinylic iodide was prepared in 56 % yield by the same procedure used to 

synthesize (E)-1 -iodo-1 -hexene. ^H NMR (CDCI3) 5 l.(X) (s, 9 H, f-Bu), 5.95 (d,l H, J 

= 15.9 Hz, f-BuCH=CH), 6.56 (d, 1 H, / = 15.9 Hz, f-BuCH=CH); IR (neat) 3071, 

2961, 2903, 1599, 1259, 935 cm'l. 

(E)-3-Iodo-3-bexene 

This vinylic iodide was prepared in 26 % yield by the same procedure used to 

synthesize (E)-1 -iodo-1 -hexene. ^H NMR (CDCI3) 5 0.99 (t, 3 H, 7 = 7.2 Hz, CH3), 

I.04 (t, 3 H, 7 = 7.2 Hz, CH3), 2.06 (q, 2H,7 = 7.2 Hz, CH2), 2.41 (q, 2H,7 = 7.2 

Hz, CH2), 6.15 (t, 1H,7 = 9.7 Hz, C=CH); IR (neat) 3024, 1630, 1134, 1065, 852 

cm'l. 

l-Iodo-l-cyclohexene^5 

In a dry pyrex culture tube equipped with a stirring bar was weighed magnesium 

iodide (1.66 g, 11 nmiol). Then 1-cyclohexenyl triflate (1.20 g, 5.5 mmol), Et3N (0.56 

g, 5.5 mmol), and cyclohexane (50 mL) were added sequentially. The tube was sealed 
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and heated to 120 °C for 60 hours. The solution was concentrated in vacuo, and the 

residue was columned over silica gel using hexane as the eluent to afford the desired 

product in 50 % yield. The NMR spectral data matched the data reported in the 

literature.3i 

4-Iodo-3-butyn-l-ol ̂  ̂  

In a 500 mL round bottom flask equipped with a stirring bar were added ether (150 

mL), mercury acetate (9.56 g, 30.0 mmol), and 3-butyn-l-ol (4.20 g, 4.60 mL, 60.0 

mmol). Solid iodine (15.3 g, 60.0 mmol) was added slowly in portions to the rapidly 

stirred mixture. After the addition was complete, the flask was sealed with a septum and 

the contents were stirred for 48 hours at room temperature in the absence of light The 

mercuric iodide was removed by filtering the reaction mixture through a short column of 

Celite. The solids were then washed with ether (3 x 50 mL). The filtrate was washed 

with saturated Na2C03 (2 x 75 mL), NazSiOg (5 %, 75 mL), and the organic layer was 

dried over anhydrous MgSO^, filtered, and concentrated in vacuo to afford a light green 

oil in 100 % yield. iH NMR (CDCI3) 5 2.63 (t, 2 H, / = 6.3 Hz, CH2CH2OH), 3.73 (t, 

2 H, 7 = 6.3 Hz, CH2OH); IR (neat) 3358,1713,1047 cm-1. 

4-(2-Tetrahydropyranoxy)-l-iodo-l-butynel6 

In a 250 mL round bottom flask equipped with a stirring bar were added anhydrous 

CH2CI2 (210 mL), and 4-iodo-3-butyn-l-ol (5.88 g, 30 mmol) and 3,4-dihydro-2//-

pyran (3.36 g, 40.0 mmol). Once the contents were stirring, PPTS (0.753 g, 3.00 mmol) 

was added all at once. After the solution was stirred for four hours, it was combined with 

ether (200 mL) and washed with saturated NaCl (200 mL). The aqueous layer was 
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discarded and the remaining organic layer was washed with water. The organic layer was 

dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to afford the 

desired product in 99 % yield. NMR (CDCI3) 8 1.53 - 1.84 (m, 6 H, CH2's), 2.67 

(t, 2 H, / = 6.9 Hz, CH2), 3.54 - 3.84 (m, 4 H, CH2-0's), 4.64 (t, 1 H, / = 1.8 Hz, O-

CH-0); IR (neat) 2943,2872,1732,1200,1136 cm-l. 

(Z)-3-(2-Tetrahydropyranoxy)-l-iodo-l-butene 

Freshly prepared dipotassium azodicarboxylate (14.4 g, 74.0 mmol) was added to a 

250 mL round bottom flask equipped with a large stirring bar, addition funnel, and a 

reflux condenser. To the flask were also added pyridine (15 mL), methanol (30 mL), and 

3-(2-tetrahydropyranoxy)-l-iodo-l-butyne (5.64 g, 20.0 mmol). A mixture of acetic acid 

(18 mL) and methanol (18 mL) was added to the addition funnel. The methanol-acetic 

acid mixture was added dropwise at room temperature at such a rate as to cause only a 

gentle reflux. After the addition, the mixture was stirred for 24 hours. The mixture was 

poured into a 500 mL round bottom flask containing ether (200 mL), The contents were 

stirred rapidly as ice-cold 5 % HQ (1(X) mL) was slowly added. The layers were 

separated and the aqueous layer was extracted with ether (2x50 mL). The combined 

ether layers were washed with saturated Na2C03 and water. The organic layer was 

concentrated in vacuo and the residue was added n-butylamine (10 mL), and the mixture 

was stirred for three hours at room temperature to remove the over reduced product. The 

mixture was added to ether (75 mL), washed with water (2 x 100 mL), cold 5 % HQ (150 

mL), and water (100 mL). The ether layer was dried over anhydrous MgS04, filtered, 

concentrated in vacuo, and columned over basic alumina using hexane as the eluent to 

afford the desired product in 66 % yield. NMR (QDQ3) 5 1.57 - 1.75 (m, 6 H, 
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CHz's), 2.45 (dt, 2 H, / = 7.2 Hz, J = 7.2 Hz, Œ2), 3.46 - 3.90 (m, 4 H, CHzO's), 

4.61 (dd, 1 H, / = 1.8 Hz, / = 1.8 Hz, O-CH-0), 6.30 - 6.32 (m, 2 H, CH=CHI); IR 

(neat) 3019, 2939, 2868, 1200, 1136,1121, 1074, 1034, 984 cm'K 

(£)-3-(2-Tetrahydropyranoxy)-l-iodo-l-octene 

This vinylic iodide was prepared from the corresponding alcohol, 1 -iodo-1 -octen-

3-ol, and 3,4-dihydro-2f/-pyran using a procedure identical to the procedure used for the 

preparation of 3-(2-tetrahydropyranoxy)-l-iodo-l-butyne (100 %). ^H NMR (CDCI3) 6 

0.88 (t, 3 H, / = 7.2 Hz, CH3), 1.16 - 1.92 (m, 14 H, CHz's), 3.46 - 3.52 (m, 1 H, 

CHH-0), 3.80 - 3.87 (m, 1 H, CHH-0), 3.99 - 4.16 (m, 1 H, CH-OTHP), 4.61 - 4.57 

(m, 1 H, O-CH-0), 6.23 - 6.40 (m, 1 H, CH=CHI). 6.51 - 6.61 (m, 1 H, CH=CHI); IR 

(neat) 2934, 2910,1261,1200,1022 cm-1. 

/ra/ts-P-iodoacrylonitrilel^ 

In a bomb apparatus was placed 1% (15 g, 60 mmol). After the bomb was sealed, 

acetylene was passed through it for five minutes before the bomb was pressurized to 250 

psi, and the bomb was heated to 140 -160 "C for 24 hours. The bomb was cooled to 

room temperature and the excess acetylene was released. The resulting dark solids were 

added ether, filtered, added activated charcoal, and filtered. After the ether was removed, 

the crude yellow solid, (E)-1,2-diiodoethene, was used without purification. In a 250 mL 

round bottom flask were placed (E)-1,2-diiodoethene (10 g, 36 mmol), CuCN (3.0 g, 33 

mmol), and dry DMF (40 mL). The heterogeneous mixture was flushed with N2 and a 

positive N2 atmosphere was maintained. The contents were heated to 100 oC for 24 

hours, then the mixture was allowed to cool to room temperature before it was added to 
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ether (200 mL). The solution was filtered through Celite, and the solids were washed 

with more eAer. The filtrate was washed with water ( 3 x 100 mL), dried over anhydrous 

MgS04, filtered, concentrated in vacuo, and the dark yellow solid was recrystallized from 

hexane to afford the desired vinylic iodide in 50 % yield. NOTE: THIS COMPOUND IS 

A POWERFUL IRRITANT, THUS rr MUST BE HANDLED WITH CAUTION! ^H 

NMR (CDCI3) Ô 5.23 (d, 1 H, / = 15.5 Hz, ICH=CHCN), 6.22 (d, 1 H, / = 15.5 Hz, 

ICH=CHCN). 

Methyl (E)-3-broniopropenoatel9 

Propiolic acid (4.90 g, 4.30 mL, 70.0 mmol) was added dropwise to aqueous HBr 

(48 % in water, 28 mL) and then the solution was heated to reflux for 1.5 hours. When 

the solution was cooled in an ice bath, (E)-3-bromopropenoic acid crystallized from the 

solution. The solid was collected by filtration and transferred to a 250 mL round bottom 

flask containing a stirring bar and methanol (50 mL). After a few drops of concentrated 

sulfuric acid were added, the solution was heated to reflux for 24 hours. The contents 

were diluted with ether, extracted twice with 10 % NaOH, and then the organic layer was 

dried over anhydrous MgS04, filtered, concentrated in vacuo to afford an oil. The latter 

was distilled bulb-to-bulb (48 - 50 °C, 10 mm Hg) to afford the desired ester in 37 % 

yield. ^H NMR (CDCI3) 6 3.75 (s, 3 H, OCH3), 6.53 (d, 1 H, / = 14.4 Hz, 

CH=CHBr), 7.60 (d, 1 H, / = 14.4 Hz, CH=CHBr); IR (neat) 3082, 3001, 2955, 

1728, 1609, 1437, 1306, 1261, 1028, 941 cm-1. 



www.manaraa.com

140 

Methyl (E)-3-iodopropenoate 

This vinylic iodide was prepared in 78 % yield using a procedure identical to the one 

used in the preparation of the corresponding vinylic bromide. NMR (CDCI3) 6 3.68 

(s, 3 H, OCH3), 6.81 (d, 1 H, / = 14.7 Hz, CH=CHI), 7.83 (d, 1 H, / = 14.7 Hz, 

CH=CHI); IR (neat) 3063, 2999, 2843, 1724, 1591,1302, 1265, 1219, 1148, 947 

cm"l. 

3-Iodo-2-cycIohexen-l-one20 

To a stirred solution of recrystaUized PPhg (1.73 g, 6.60 mmol) in dry acetonitrile (60 

mL) was added I2 (1.68 g, 6.60 mmol), and the mixture was stirred at room temperature 

for two hours. To this yellow-orange suspension was added sequentially EtgN (0.667 g, 

0.92 mL, 6.60 mmol) and 1,3-cyclohexanedione (0.672 g, 6.00 mmol). The mixture was 

heated to reflux for 9 hours, concentrated in vacuo, and filtered through a short column of 

silica gel (50 g) using ether as the eluenL The filtrate was concentrated in vacuo and the 

residue was columned over silica gel using hexane / EtOAc (4:1) to afford the desired 

iodoenone in 85 % yield. ^H NMR (CDCI3) 5 2.03 (quintet, 2 H, / = 6.3 Hz, CH2), 

2.43 (t, 2 H, / = 6.3 Hz, Œ2), 2.91 (dt, 2 H, 7 = 7.8 Hz,/= 1.5 Hz, CHz), 6.81 (t, 1 

H, 7 = 1.5 Hz, CH=CI); IR (muU) 1675,1595 cmrK 

Ethyl 2-broniopropenoate^l 

In a dry 100 mL round bottom flask containing a stirring bar were placed DEAD (1.46 

g, 1.32 mL, 8.40 mmol), 2-bromopropenoic acid (1.05 g, 7.00 mmol), and etiier (23 

mL). In a separate flask were placed PPhg (2.02 g, 7.70 mmol), EtOH (0.483 g, 1.63 

mL, 10.5 mmol), and ether (10 mL). The contents of the latter flask were added dropwise 



www.manaraa.com

141 

into the stirring solution of the other flask, and after the addition was complete, stirring 

was continued overnight. The solution was washed with saturated NaiCOg (50 mL), 

dried over anhydrous MgS04, filtered, concentrated in vacuo, and columned over silica 

gel using hexane /EtOAc (6:1) as the eluent to afford the desired vinylic bromide in 100 

% yield. iR NMR (CDCI3) 5 1.34 (t, 3 H, / = 7.2 Hz, CH3), 4.29 (q, 2 H, / = 7.2 Hz, 

CH2), 6.27 (d, 1 H, / = 1.8 Hz, CHH=CBr), 6.96 (d, 1 H, 7 = 1.8 Hz, CHH=CBr); IR 

(neat) 3117, 2986, 2934,1736, 1239, 1101, 1022,937 cm-1. 

(E)-l,2-Diiodo-l-hexene22 

In a 50 mL round bottom flask containing a stirring bar were placed activated, neutral 

alumina ( 9.46 g) and I2 (3.07 g, 12.1 mmol). After the flask was septum sealed, pentane 

(21 mL) and 1-hexyne (0.82 g, 1.15 mL, 10.0 mmol) were injected sequentially. The 

mixture was stirred rapidly for 5 hours before the contents were vacuum filtered. The 

alumina was washed once with pentane and the filtrate was concentrated in vacuo to afford 

the desired diiodo compound in 94 % yield. ^H NMR (CDCI3) 5 0.95 (t, 3 H, / = 7.2 

Hz, CH3), 1.36 (tq, 2 H, 7 = 7.2 Hz, / = 7.2 Hz, CH2), 1.53 (quintet, 2 H, / = 7.2 Hz, 

CH2), 2.51 (t, 2 H, / = 7.2 Hz, %), 6.80 (s, 1 H, CH=C); IR (neat) 3071, 2957, 

2932, 1464, 1427, 1205, 1109, 968, 951, 768 cm-l. 

(J5)-3,4-Dnodo-3-hexene22 

This compound was prepared in 100% yield from 3-hexyne by a procedure identical 

to the one used for preparing (E)-1,2-diiodo-1 -hexene. ^H NMR (CDCI3) 6 1.04 (t, 6 H, 

J = 7.2 Hz, CH3), 2.69 (q, 4 H, / = 7.2 Hz, CH2); IR (neat) 2970, 2932, 2851, 1454, 

1433, 1371, 1313,1261, 1074, 906, 795 cm-1. 
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2-Bronio-2-cycIohexenone23 

In a dry 50 mL round bottom flask equipped with a stiiring bar and an addition funnel 

were placed CH2CI2 (11 mL) and 2-cyclohexenone (1.92 g, 1.93 mL, 20.0 mmol). The 

solution was cooled to 0 "C before a solution of Br^ (3.16 g, 1.02 mL, 20 mmol) in 

CH2CI2 (1 mL) was added dropwise. Stirring was continued for 1 hour before EtsN 

(3.03 g, 4.17 mL, 30.0 mmol) was added, and the solution was allowed to stir and come 

to room temperature overnight The organic layer was washed with saturated NaCl, 

water, and dried over anhydrous MgS04. After the solvent was removed in vacuo, the 

solid residue was recrystallized from EtOH and water to afford die desired product as 

brown crystals (mp. 69 - 72 °C) in 82 % yield. NMR (CDCI3) 8 2.08 (quintet, 2 H, 7 

= 6.6 Hz, CH2), 2.44 - 2.49 (m, 2 H, CH2), 2.64 (t, 2 H, / = 6.6 Hz, CH2), 7.43 (t, 1 

H, / = 4.5 Hz, C=CH); IR (nujol) 3040, 1680,1597, 1124, 991,972, 916 cm-1. 

Cyclohexenyl triflate^^ 

To a -78 °C solution of diisopropylamine (0.545 g, 5.40 mmol) in THF (10 mL) was 

added n-butyllithium (2.30 mL, 2.35 M). The solution was stirred at -78 °C for 10 

minutes, 0 "C for 10 minutes, and then cooled back down to -78 ®C before freshly distilled 

cyclohexanone (0.490 g, 5.00 mmol) was injected. The resulting solution was stirred at 

-78 °C for 30 minutes, 0 °C for 30 minutes, and then cooled back down to -78 °C before 

^-phenyltrifluoromethanesulfonimide (1.90 g, 5.30 mmol) in THF (10 mL) was added. 

The contents were stirred at -78 °C for one hour, 0 "C for one hour, and then at room 

temperature for two hours. Once analysis by thin-layer chromatography indicated that all 

of the cyclohexanone has been consumed, the reaction was quenched by the addition of 

saturated NH4CI and extracted with ether. The ether extracts were washed with water (25 
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mL) and saturated NaCl (25 ml), dried over anhydrous MgS04, filtered, and concentrated 

in vacuo to afford the crude product. The residue was purified by filtration through a 

short column of silica gel using hexane as the eluent followed by bulb-to-bulb distillation 

(82 - 85 °C,18 mm Hg) to afford the desired triflate in 52 % yield. NMR (CDCI3) 5 

1.23 - 1.83 (m, 4 H, CHi's), 1.87 - 2.40 (m, 4 H, CHi's), 5.60 - 5.76 (m, 1 H, 

C=CH); IR (neat) 1690 cm'l. 

2-HexenyI triflate^S 

In a 100 mL round bottom flask equipped with a stirring bar were added 1-hexyne 

(9.98 g, 14.0 mL, 122 mmol) and pentane (25 mL). After the solution was cooled to 

-30 OC, trifluoromethanesulfonic acid was added dropwise over a period of 15 minutes 

using an addition funnel. After the addition was complete, the solution was allowed to 

warm quickly to 0 °C, and then a solution of saturated Na2C03 (20 mL) was added. After 

the aqueous" solution layer was removed, the organic layer was washed twice with 

saturated NazCOg, and then dried over K2CO3. After the organic layer was filtered, and 

concentrated in vacuo, the residue was distilled (67 - 69 oC, 15 mm Hg) to afford the 

desired triflate in 94 % yield. % NMR (CDCI3) Ô 0.93 (t, 3 H, 7 = 7.2 Hz, CH3), 1.39 

(quintet, 2 H, 7 = 7.5 Hz, CH2), 1.53 (quintet, 2 H, / = 7.5 Hz, CH2), 2.34 (t, 2 H, / = 

7.5 Hz, CH2), 4.93 (d, 1 H, / = 3.6 Hz, C=CHH), 5.09 (d, 1 H, / = 3.6 Hz, C=CHH); 

IR (neat) 3138, 2964, 1672, 1470, 1420, 1250, 1211, 1173, 1101, 949, 906, 840, 702, 

705 cm'l. 
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3-(TrifluoromethyIsulfonyloxy)cycIohex-2-en-l-one26 

To a stirred solution of NaH (50 % in oil, 1.77 g, 36.3 mmol) in DME (78 mL) was 

added dropwise a solution of 1,3-cyclohexanedione (4.30 g, 38.4 mmol). After the 

evolution of hydrogen gas ceased, the mixture was stirred for an additional 25 minutes, 

cooled to -78 °C and trifluoromethanesulfonic acid anhydride (10.0 g, 35.5 mmol) was 

slowly added to the solution. After stirring for two hours at -78 °C, the mixture was 

warmed to room temperature, the DME removed under reduced pressure, and the residue 

was dissolved in Œ2CI2 (160 mL). The organic layer was washed with saturated 

solutions of Na2C03 (100 mL), NaCl, and then water, dried over anhydrous MgS04, and 

the solvent was removed under reduced pressure at 0 °C. The residue was 

chromatographed over silica gel using chloroform as the eluent (160 mL). Removal of the 

solvent under reduced pressure at 0 °C afforded the triflate in 52 % yield. THIS 

TRIFLATE IS QUITE UNSTABLE AT ROOM TEMPERATURE. THIS TRIFLATE 

MUST ALSO BE DILUTED WITH AN ORGANIC SOLVENT BEFORE IT CAN BE 

STORED IN THE FREEZER. iH NMR (CDCI3) S 2.13 (tt, 2 H, / = 6.6 Hz, / = 6.3 

Hz, CH2), 2.45 (t, 2 H, 7 = 6.3 Hz, CH2), 2.69 (dt, 2 H, / = 6.3 Hz, / = 1.2 Hz, CH2), 

6.06 (t, IH, y =1.2 Hz, C=CH); 13C NMR (CDCI3) Ô 20.60, 28.24, 29.53, 36.12, 

118.94, 167.27, 197.03; IR (neat) 2955, 2926, 1701, 1647, 1462, 1377, 1248, 1219, 

1142, 1072, 1043, 908, 798 cm-1. 

Procedure A 

In a dry 10 mL round bottom flask equipped with a stirring bar were added Pd(0Ac)2 

(0.003 g, 2.5 mol %), TBAC (0.147 g, 0.530 mmol), anhydrous KO Ac (0.147 g, 1.50 

mmol), and the vinylic halide or triflate (0.500 mmol). The flask was sealed with a 
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septum (for 25 "C reactions) or was affixed with a condenser sealed with a septum (for 80 

"C reactions). The contents were flushed with Ni for two minutes and then a positive N2 

atmosphere was maintained with a balloon or a bubbler. Cycloalkene (2.5 mmol) and 

anhydrous DMF (1.0 mL) were sequentially injected, and the mixture was stirred for the 

length of time and at the temperature indicated in Tables 2 or 3. After gas chromatographic 

analysis indicated that all of the vinylic halide or triflate had been consumed, the mixture 

was added to a separatory funnel containing ether (25 mL) and saturated aqueous NH4CI 

(25 mL). The organic layer was separated, dried over anhydrous MgS04, filtered, 

concentrated in vacuo, and columned over silica gel using hexane or hexane /EtOAc 

mixture to afford the desired 1,4-diene. 

Procedure B 

In a dry 25 mL round bottom flask equipped with a stirring bar were added Pd(0Ac)2 

(0.0035 g, 3.0 mol %), PPhg (0.012 g, 9.0 mol %), Ag2C03 (0.276 g, 1.00 mmol) and 

the vinylic halide or triflate (0.500 mmol). The flask was sealed with a septum or a reflux 

condenser equipped with a septum. The contents were flushed with nitrogen for two 

minutes, and a positive nitrogen atmosphere was maintained. Cycloalkene (2.5 mmol) 

and anhydrous acetonitrile (6.0 mL) were sequentially injected. The mixture was stirred 

for the length of time and at the temperature indicated in Tables 2 or 3. After gas 

chromatographic analysis indicated that all of the vinylic halide or triflate had been 

consumed, the mixture was diluted with ether (10 mL). The mixture was filtered through 

a small plug of Celite and the solids were washed with ether ( 3 x 10 mL). The filtrate 

was poured into a separatory funnel containing saturated NH4CI, and the ether layer was 
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dried over anhydrous MgS04, filtered, concentrated in vacuo, and columned over silica 

gel using either hexane or hexane / EtOAc mixture to afford the desired 1,4-diene. 

2-(3-CycIopentenyl)-l-hexene (Table 2, entry 2) 

This diene was purified over silica gel using hexane as the eluent. NMR (CDCI3) 

Ô 0.93 (t. 3 H, / = 7.2 Hz. CH3), 1.20 - 1.67 (m, 6 H, CHz's), 2.00 - 2.20 (m, 2 H, 

C=C-CH2), 2.23 - 2.59 (m, 2 H, C=C-CT2). 3.30 (br s, 1 H, C=C-CH-C=C), 4.69 (m, 

1 H, C=C(H)H), 4.73 (br s, IH, C=C(H)H), 5.58 - 5.69 (m, 1 H. CH=CH), 5.73 -

5.88 (m. 1 H, CH=(3D; NMR (CDCI3) S 14.02, 22.89, 30.34, 32.17, 34.59, 

37.95, 51.69, 107.22, 129.83, 131.29, 133.62; IR (neat) 3296, 3274, 2964, 1717, 

1677,1020 cm'l; HRMS: calcd for CnHig m/z 150.14085, found m/z 150.14104. 

2-(3-CycloheptenyI)-l-hexene (Table 2, entry 8) 

This diene was purified over silica gel using hexane as the eluent. NMR(CDCl3) 

5 0.94 (t, 3 H, / = 7.2 Hz, CH3), 1.29 - 1.73 (m, 10 H, CHz's), 2.05 (t, 2 H, 7 = 7.2 

Hz, C=CCH2), 2.13 - 2.17 (m, 2 H, €=€%), 2.90 - 2.92 (m, 1 H, C=CCHC=C), 

4.75 (d, 1 H, / = 1.5 Hz, C=C(H)H), 4.82 (t, 1 H, / = 1.5 Hz, C=C(H)H). 5.61 (dd, 1 

H, / = 4.5 Hz, / = 1.2 Hz, CH=CH), 5.76 - 5.83 (m, 1 H, CH=CH); 13c NMR 

(CDCI3) 6 14.08, 22.70, 27.07, 28.64, 30.21 (2 peaks), 32.95, 34.43, 47.01, 107.93, 

131.26, 137.53, 154.26; IR (neat) 3080, 3018, 2957, 2923, 1641, 1466, 1445, 1379, 

1020, 889,737, 687 cm'l; HRMS: calcd for C13H22 m/z 178.17215, found m/z 

178.17201. 



www.manaraa.com

147 

2-(2-HexenyI)-2,5-dihydrofuran (Table 2, entry 12) 

This diene was purified over silica gel using hexane / EtOAc (10:1) as the eluent 

NMR (CDCI3) 5 0.91 (t. 3 H, / = 7.2 Hz, CH3), 1.27 - 1.53 (m, 4 H, CH2's), 1.95 -

2.09 (m, 2 H, C=C-Œ2), 4.63 - 4.71 (m, 2 H, Œ2-O), 4.83 (dd, 1 H, / = 1.5 Hz, J = 

3 Hz, C=C(H)H), 5.03 (dt, 1 H, / = 3 Hz, / = 3 Hz, C=C(H)H), 5.21 - 5.24 (m, 1 H, 

O-CH-0), 5.73 - 5.77 (m, 1 H, dihydrofuran CÏÏ=CH), 5.90 - 5.96 (m, 1 H, 

dihydrofuran CH=CH); NMR (CDCI3) 5 13.92, 22.58, 30.11, 30.50, 75.55, 

89.69, 110.17, 126.92, 128.87, 149.68; IR (neat) 3082, 2959, 2930, 1647, 1620, 

1466,1458,1261,1138,1070,1020,901, 804,758,735, 683 cm-1; HMRS: calcd for 

CioHiôO m/z 152.12012, found m/z 152.12010. 

2-(3-CyclopentenyI)styrene (Table 2, entry 14) 

This diene was purified over silica gel using hexane as the eluent. ^H NMR (CDCI3) 

5 1.67 - 1.68 (m, 2 H, CH2), 2.18 - 2.20 (m, 1 H, C=C-C(H)H), 2.93 - 2.95 (m, 1 H, 

C=CC(H)H), 3.40 - 3.46 (m, 1 H, C=C-CH-C=C), 5.68 - 5.77 (m, 1 H, cyclopentenyl 

CH=CH), 5.82 - 5.83 (m, 1 H, cyclopentenyl CH=CH). 6.15 (d, 1 H, / = 15.9 Hz, 

PhCH=CH), 6.36 (d, 1 H, 7 = 15.9 Hz, PhCH=CH), 7.26 - 7.37 (m, 5 H, aromatic 

HS); 13c NMR (CDCI3) 6 31.09, 32.47,49.12,126.29 (2 peaks), 128.69 (2 peaks), 

131.98, 133.83, 134.60, 137.96; IR (neat) 3057, 3026, 2937, 2849, 1649, 1601, 964, 

748,723, 692 cm-1; hRMS: calcd for C13H14 m/z 170.10955, found m/z 170.10922. 

2-(3-Cyclohexenyl)styrene (Table 2, entry 21) 

This diene was purified over silica gel using hexane as the eluent ^H NMR (CDCI3) 

8 1.43 - 2.03 (m, 6 H, CHi's), 2.93 - 2.95 (m, 1 H, C=C-CH-C=C), 5.55 - 5.61 (m, 1 
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H, cyclohexenyl CE=CH), 5.76 - 5.81 (m, 1 H, cyclohexenyl CH=CÏÏ). 6.17 (dd, 1 H, 

J = 15.9 Hz, J = 7.2 Hz, PhCH=CH), 6.37 (d, 1 H, / = 15.9 Hz, PhQi=CH), 7.18 (d, 

1 H, / = 7.5 Hz, aromatic H), 7.27 (dd, 2 H, / = 7.5 Hz, J = 7.5 Hz, aromatic HS), 7.34 

(d, 2 H, / = 7.5 Hz, aromatic H); 13c NMR (CDCI3) 5 25.52, 26.08, 29.25, 38.63, 

125.97, 126.80, 127.99, 128.38, 128.99, 129.41, 134.59, 137.72; IR (neat) 3059, 

3020,2926,2856, 1649,1598, 1495,1447,962, 906,746,723 cm-1; HRMS: calcd for 

C14H16 m/z 184.12520, found m/z 184.12552. 

2-(3-CycIoheptenyI)styrene (Table 2, entry 26) 

This compound was purified over silica gel using hexane as the eluent ^H NMR 

(CDCI3) 6 1.38 - 1.79 (m, 6 H, CHz's), 2.09 - 2.18 (m, 2 H, C=CŒ2), 3.09 - 3.12 

(m, 1 H, C=C-CH-C=C), 5.68 ( dd, 1 H, 7 = 11.1 Hz, J = 4.5 Hz, cycloheptenyl 

CH=CH), 5.79 - 5.87 (m, 1 H, cycloheptenyl CH=CH), 6.28 (dd, 1 H, / = 15.6 Hz, / = 

7.2 Hz, PhCH=CH), 6.38 (d, 1 H, / = 15.6 Hz, PhCE=CH), 7.14 - 7.35 (m, 5 H, 

aromatic HS); 13c NMR (CDCI3) (one missing C-13 signal) 6 27.02,28.77,29.44, 

33.87, 43.50, 125.99, 126.80, 128.40, 128.54, 131.78, 134.82, 137.79; IR (neat) 

3082, 3058, 2920, 2851, 1599, 1495, 1447, 1070, 1028, 964, 781, 744, 692 cm-1; 

HRMS: calcd for C15H18 m/z 198.14085, found m/z 198.14129. 

2-(2-StyrenyI)-2,5-dihydrofuran (Table 2, entry 34) 

This compound was purified over silica gel using hexane / EtOAc (10:1). ^H NMR 

(CDCI3) 5 4.58 - 4.73 (m, 2 H, C=C-CH2-0), 5.32 - 5.51 (m, 1 H, C=C-CH-C=C), 

5.73 - 5.75 (m, 1 H, dihydrofuran CH=CH), 5.89 - 5.91 (m, 1 H, dihydrofuran 

CH=CH), 6.08 (dd, 1 H, / = 15.9 Hz, J = 7.2 Hz, PhCH=CH), 6.52 (d, 1 H, / = 15.9 
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Hz, PhCH=CH), 7.16 (d, 1 H, / = 7.2 Hz, aromatic H), 7.23 (t, 2 H, / = 7.2 Hz, 

aromatic HS), 7.31 (d, 2 H, 7 = 7.2 Hz, aromatic H); 13 C NMR (CDCI3) 5 75.20, 

86.67, 126.50, 127.02, 127.58, 128.41, 128.75, 129.19, 130.80, 136.56; IR (neat) 

3352, 3084, 3060, 3028, 2962, 2925, 2902, 1600, 1577, 1494, 1448, 1353, 1265, 

1119,1088,1061,966, 866, 825,795, 692, 662 cm-1; HRMS: calcd for C12H12O m/z 

172.08882, found m/z 172.08872. 

2-(2-StyrenyI)-5,6-dihydro-2^r-pyran (Table 2, entry 37) 

This compound was purified over silica gel using hexane / EtOAc (10:1). ^H NMR 

(CDCI3) 8 2.09 - 2.26 (m, 2 H, %), 3.99 (ddd, 1 H, 7= 11.4 Hz, 7 = 6.3 Hz, 7 = 3.9 

Hz, C=C-CH-C=C), 3.96 - 4.03 (m, 1 H, CHH-0), 4.30 - 4.76 (m, 1 H, CHH-0), 5.71 

- 5.76 (m, 1 H, dihydropyran CH=CH), 5.91 - 5.98 (m, 1 H, dihydropyran CH=CH), 

6.21 (dd, 1 H, / = 15.9 Hz, J = 6.3 Hz, PhCH=CH), 6.61 (d, 1 H, / = 15.9 Hz, 

PhCH=CHJ, 7.23 (d, 1 H, / = 7.2 Hz, / = 7.2 Hz, aromatic HS), 7.30 (t, 2 H, / = 7.2 

H, aromatic HS), 7.39 (d, 2 H, / = 7.2 Hz, aromatic H); 13c NMR (CDCI3) 8 25.10, 

62.31, 74.09, 125.30, 126.44, 127.57, 128.43, 128.46, 128.77, 131.69, 136.69; IR 

(neat) 3050, 2964,1599, 1448, 1414, 1261, 1180, 1080, 1020, 798, 746, 690 cm-1; 

HRMS: calcd for C13H14O m/z 186.10447, found m/z 186.10467. 

(Z)-l-(3-CycIopentenyI)-l-hexene (Table 2, entry 51) 

This diene was purified over silica gel using hexane as the eluent. ^H NMR (CDCI3) 

8 0.83 (t, 3 H, y = 6.6 Hz, CH3), 1.29 - 1.38 (m, 4 H, CHa's), 1.70 - 1.74 (m, 2 H, 

CH2), 1.96 - 2.10 (m, 4 H, C=C-CH2's), 3.10 - 3.19 (m, 1 H, C=C-CH-C=C), 5.21 -

5.40 (m, 2 H, n-BuCH=CH), 5.58 - 5.69 (m, 1 H, CH=CH), 5.73 - 5.88 (m, 1 H, 
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CH=CH); 13c NMR (CDCI3) 6 13.98, 23.60, 30.94, 31.74, 32.30, 34.18, 48.76, 

130.04, 131.03,134.84, 135.87; IR (neat) 3049, 2965, 2918, 1612,1466, 1376, 912 

cm"l; HRMS: calcd for CnHig vajz 150.14085, found m/z 150.14070. 

(Z)-l-(3-Cyclopentenyl)-l-hexene (Table 2, entry 60) 

This diene was purified over silica gel using hexane as the eluent NMR (CDCI3) 

5 0.92 (t, 3 H, y = 6.9 Hz, CH3), 1.30 - 1.39 (m, 6 H, CH2's), 1.74 - 1.78 (m, 2 H, 

CH2), 1.97 - 2.10 (m, 4 H, C=C-CH2's), 3.04 - 3.12 (m, 1 H, C=C-CH-C=C), 5.21 -

5.40 (m, 2 H, n-BuCH=CH), 5.44 - 5.49 (m, 1 H, CH=CH), 5.69 - 5.74 (m, 1 H, 

CH=CH); 13c NMR (CDCI3) 6 13.98, 21.17, 22.37, 24.88, 27.08, 29.63, 32.16, 

33.09, 127.05, 129.15, 130.78, 139.94; IR (neat) 3020, 3005, 2958, 2929, 1652, 

1465,1456,910,737, 694, 669 cm'l; HRMS: calcd for C12H20 m/z 164.15650, found 

m/z 164.15636. 

(Z)-l-(3-CycIoheptenyl)-l-hexene (Table 2, entry 63) 

This diene was purified over silica gel using hexane as the eluent. iH NMR (CDCI3) 

6 0.89 (t, 3 H, y = 6.9 Hz, CH3), 1.30 - 1.66 (m, 10 H, CH2's), 1.98 - 2.00 (m, 2 H, 

C=CCH2), 2.09 - 2.12 (m, 2 H, C=C-CH2). 2.88 - 2.90 (m, 1 H, C=CCHC=C), 5.35 -

5.50 (m, 2 H, /i-BuCH=CH), 5.59 (dd, 1 H, / = 4.2 Hz, / = 11.4 Hz, CH=CH), 5.70 -

5.79 (m, 1 H, CH=Qi); ^^C NMR (CDCI3) 8 13.96, 22.23, 27.18, 28.83, 29.60, 

31.87, 32.26, 34.21, 43.27, 128.38, 130.99, 134.59, 136.21; IR (neat) 3017, 2957, 

2872,1647,1466, 1445,1379, 986, 908, 858,737, 690, 683 cm'l; HRMS: calcd for 

C13H22 no/z 178.17215, found m/z 178.17193. 
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2-((Z)-l-hexenyl)-2,5-dihydrofuran (Table 2, entry 65) 

This diene was purified over silica gel using hexane / EtOAc (10:1) as the eluent 

NMR (CDCI3) 5 0.83 (t, 3 H, / = 6.6 Hz, CH3), 1.20 - 1.36 (m, 4 H, Œ2's), 2.08 (t, 

2 H, / = 6.6 Hz, C=C-CH2), 4.55 - 4.59 (m, 2 H, C=C-CH2-0), 4.66 - 4.69 (m, 1 H, 

C=C-CH-C=C), 5.30 (dd, 1 H, / = 10.5 Hz, 7 = 9 Hz, M-BuCH=CH), 5.43 - 5.50 (m, 1 

H, rt-BuCH=CH), 5.63 - 5.66 (m, 1 H, dihydrofuran Cai=CH), 5.87 - 5.89 (m, 1 H, 

dihydrofuran CH=ÇH); NMR (CDCI3) 5 13.85, 22.22, 27.18, 31.83, 74.84, 

81.47, 126.59, 129.16, 129.40, 132.36; IR (neat) 3015, 2959, 2874, 1446, 1261, 

1101,1070,1020, 905, 802,754,733, 687 cm-1; HRMS: calcd for CioHigO m/z 

152.12012, found m/z 152.12038. 

(i?)-l-(3-CycIopentenyI)-l-hexene (Table 2, entry 67) 

This diene was purified over silica gel using hexane as the eluent. ^H NMR (CDCI3) 

5 0.88 (t, 3 H, / = 6.9 Hz, CH3), 1.27 - 1.35 (m, 4 H, CH2's), 1.95 - 2.12 (m, 4 H, 

CHz's), 2.27 - 2.36 (m, 2 H, C=C-CH2), 3.20 - 3.26 (m, 1 H, C=C-CH-C=C), 5.29 -

5.46 (m, 2 H, /i-BuCH=CH), 5.57 - 5.61 (m, 1 H, cyclopentenyl CH=CH), 5.72 - 5.76 

(m, 1 H, cyclopentenyl CH=CH); 1% NMR (CDCI3) 5 13.98, 22.26, 22.71, 30.95, 

31.81, 32.20, 48.56, 129.03, 130.77, 133.91, 134.47; IR (neat) 3055, 2959, 1612, 

1466,1458,1379,1286,1088,966,912,721 cm-1; HRMS: calcd for CnHig m/z 

150.14085, found m/z 150.14104. 

(£)-l-(3-Cyclohexenyl)-l-hexene (Table 2, entry 68) 

This diene was purified over silica gel using hexane as the eluent. ^H NMR (CDCI3) 

6 0.89 (t, 3H,y= 6.9 Hz, CH3), 1.25 - 1.42 (m, 4 H, CH2's), 1.48 - 1.53 (m, 2 H, 
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CH2), 1.70 - 1.75 (m, 2 H, CHg), 1.96 - 2.06 (m, 4 H, C=C-CH2's), 2.68 - 2.73 (m, 1 

H, C=C-CH-C=C), 5.36 - 5.41 (m, 2 H, n-BuCH=CH), 5.52 - 5.56 (m, 1 H, CÏÏ=CH), 

5.65 - 5.71 (m, 1 H, CH=C3D; NMR (CDCI3) 5 13.97, 20.69, 22.23, 25.15, 

29.58, 31.84, 32.30, 38.39, 127.18, 129.67, 130.55, 134.30; IR (neat) 3020, 2957, 

2874,1466,1456,966,908,737,723, 677 cm'l; HRMS: calcd for C12H20 m/z 

164.15650, found m/z 164.15644. 

(iB)-l-(3-Cycloheptenyl)-l-hexene (Table 2, entry 69) 

This dlene was purified over silica gel using hexane as the eluent. % NMR (CDCI3) 

8 0.89 (t, 3 H, / = 6.9 Hz, CH3), 1.30 - 1.66 (m, 10 H, CH2's), 1.98 - 2.00 (m, 2 H, 

C=CCH2), 2.09 - 2.12 (m, 2 H, C=CCH2), 2.88 - 2.90 (m, 1 H, C=CCHC=C), 5.35 -

5.50 (m, 2 H, /i-BuCH=CH), 5.59 (dd, 1 H, / = 4.2 Hz, / = 11.4 Hz, CH=CH), 5.70 -

5.79 (m, 1 H, CH=ai); NMR (CDCI3) 5 13.96, 22.22, 27.18, 28.83, 29.60, 

31.87, 32.26, 34.21, 43.27, 128.38, 130.99, 134.59, 136.21; IR (neat) 3017, 2957, 

2872, 1647,1466,1445,1379,986,908, 858,737, 690, 683 cm-l; HRMS: calcd for 

C13H22 m/z 178.17215, found m/z 178.17193. 

2-((£)-l-hexenyl)-2,5-dihydrofuran (Table 2, entry 70) 

This diene was purified over silica gel using hexane / EtOAc (10: 1) as the eluent. ^H 

NMR (CDCI3) S 0.89 (t, 3 H, / = 6.9 Hz, CH3), 1.29 - 1.39 (m, 4 H, CH2's), 2.04 (dt, 

2 H, 7 = 6.9 Hz, J = 6.9 Hz, C=CCH2), 4.58 - 4.72 (m, 2 H, CH2O), 5.17 ( br s, 1 H, 

C=CCHC=C), 5.41 (dd, 1 H, / = 6.9 Hz, / = 15.3 Hz, »-BuCH=CH), 5.65 - 5.74 (m, 2 

H, M-BuCH=CH and dihydrofuran CH=CH), 5.90 (d, 1 H, / = 5.7 Hz, dihydropyran 

CH=CH); 13c NMR (CDCI3) Ô 14.30, 22.61, 31.57, 32.19, 75.32, 87.31, 126.98, 
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129.76, 130.12, 133.63; IR (neat) 3082, 2958, 2928, 2873, 2854, 1666, 1618, 1466, 

1458,1352,1261,1086,1061, 1020,968,908, 800,735, 694 cm'l; HRMS: calcd for 

CioHieOm/z 152.12012, found m/z 152.11998. 

l-(3-CycIopentenyl)-l-cycIohexene (Table 2, entry 71) 

This diene was purified over silica gel using hexane as the eluent. NMR (CDCI3) 

Ô 1.52 - 1.65 (m, 4 H, Œ2's), 1.88 - 2.11 (m, 6 H, Œa's), 2.27 - 2.36 (m, 2 H, C=C-

CH2), 3.19 - 3.24 (m, 1 H, C=CCHC=C), 5.41 (br s, 1 H, CH=C), 5.59 - 5.63 (m, 1 

H, Qi=CH), 5.76 - 5.80 (m, 1 H, CH=CH); NMR (CDCI3) 5 22.75, 23.12, 

25.26, 26.43, 29.32, 32.37, 52.96, 119.70, 131.13, 133.61, 140.90; IR (neat) 3051, 

2993, 2923, 1664, 1614, 1458, 1446, 1375, 1350, 1134, 1013, 920, 802, 754, 727 

cm"l; HRMS: calcd for CnHig m/z 148.12520, found m/z 148.12497. 

3-(CycIohexenyl)-l-cycloheptene (Table 2, entry 75) 

This diene was purified over silica gel using hexane as the eluent. NMR (CDCI3) 

5 1.48 - 1.69 (m, 10 H, CHz's), 1.90 - 2.02 (m, 4 H, C=CCH2's), 2.12 - 2.19 (m, 2 H, 

C=CCH2), 2.76 - 2.79 (m, 1 H, C=C-CH-C=C), 5.44 ( br s, 1 H, CH=C), 5.58 (dd, 1 

H, / = 3.9 Hz, / = 11.4 Hz, Qi=CH), 5.72 - 5.81 (m, 1 H, CH=CH); 13c NMR 

(CDCI3) 6 22.78, 23.26, 25.28, 26.44, 27.09, 28.67, 30.16, 32.59, 48.49, 120.15, 

131.09, 136.55, 142.03; IR (neat) 3016, 2925, 2854, 2837, 1745, 1666, 1645, 1494, 

1446, 1269,1136,1084,956,931, 879,788 cm-1; HRMS: calcd for C13H20 m/z 

176.15650, found 176.15642. 
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2-(l-CycrohexenyI)-2,5-dihydrofuran (Table 2, entry 76) 

This diene was purified over silica gel using hexane /EtOAc (10:1) as the eluent 

NMR (CDCI3) 5 1.56 - 1.64 (m, 4 H, CHg's), 2.02 - 2.03 (ra, 4 H, C=CŒ2's), 4.63 -

4.69 (m, 2 H, Œ2-O), 5.12 (br s, 1 H, C=CCHC=C), 5.68 - 5.71 (m, 2 H, CH=CH), 

5.92 - 5.95 (m, 1 H, CH=C); 13c NMR (CDCI3) ô 22.52 (two overlapping signals), 

23.36, 25.05, 75.61, 90.53, 124.14, 127.02, 128.77, 137.99; IR (neat) 3078, 2923, 

28.35, 1456, 1446, 1436, 1379, 1350, 1282, 1259, 1174, 1082, 1053, 1022, 920, 837, 

797,719,649 cm'l; HRMS: calcd for C10H14O m/z 150.10447, found 150.10467. 

(E)-l-(3-CyclopentenyI)-3,3-dimethyI-l-butene (Table 2, entry 77) 

This diene was purified over silica gel using hexane as the eluent NMR (CDCI3) 

5 0.99 (s, 9 H, f-Bu), 1.45 - 1.56 (m, 2 H, Œ2), 2.03 - 2.38 (m, 2 H, C=C-CH2). 3.19 

- 3.24 (m, 1 H, C=CCHC=C), 5.26 (dd, 1 H, / = 15. 6 Hz, J = 7.8 Hz, f-BuCH=CH), 

5.44 (d, 1 H, / = 15.6 Hz, r-BuCii=CH), 5.59 - 5.60 (m, 1 H, cyclopentenyl CH=CH), 

5.73 - 5.76 (m, 1 H, cyclopentenyl CH=Qi); NMR (CDCI3) 5 29.85, 31.04, 

32.18, 32.61, 48.48, 128.55, 130.66, 134.67, 140.20; IR (neat) 3060, 3010, 2960, 

2870,1470,1455,1360,1270,1195,970,720 cm-1; HRMS: calcd for CnHig m/z 

150.14085, found m/z 150.14082. 

(£)-l-(3-CycloheptenyI)-3,3-diniethyM-butene (Table 2, entry 82) 

This diene was purified over silica gel using hexane as the eluent. ^H NMR (CDCI3) 

5 1.00 (s, 9 H, r-Bu), 1.32 - 1.48 (m, 2 H, CH2), 1.54 - 1.69 (m, 2 H, CH2), 1.84 -

1.92 (m, 2 H, CH2), 2.09 - 2.11 (m, 2 H, C=C-CH2), 2.85 - 2.89 (m, 1 H, C=C-CH-

C=C), 5.35 (dd, 1 H, / = 15.6 Hz, 7 = 9.9 Hz, r-BuCH=CH), 5.45 (d, 1 H, / = 15.6 
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Hz, f-BuCIi=CH), 5.59 (dd, 1 H, /= 11.4 Hz, J = 4.5 Hz, cycloheptenyl Qi=CH), 

5.76 (ddd, 1 H, / = 6.3 Hz, / = 4.5 Hz, / = 1.8 Hz, cycloheptenyl CH=Cïï); NMR 

(CDCI3) S 27.14, 28.82, 29.64, 29.85, 32.68, 34.33, 43.16, 129.13, 131.03, 136.47, 

140.02; IR (neat) 3017, 2961, 2862, 1475, 1462, 1391, 1362, 1267, 1204, 970, 737, 

689 cm-1; HRMS: calcd for C13H22 m/z 178.17215, found mjz 178.17198. 

2-((£)-3,3-DiinethyI-l-butenyl)-2,5-dihydrofuran (Table 2, entry 88) 

This diene was purified over silica gel using hexane / EtOAc (10 :1) as the eluent ^H 

NMR (CDCI3) 5 0.94 (s, 9 H, t-Bu), 4.48 - 4.66 (m, 2 H, Œ2O), 5.08 (br s, 1 H, 

C=C-CH-C=C), 5.25 (dd, 1 H, 7 = 15.3 Hz, J = 7.8 Hz, f-BuCH=CH), 5.63 - 5.67 (m, 

1 H, dihydrofuran CH=CH), 5.63 (d, 1 H, / = 15. 3 Hz, f-BuCH=CH), 5.81 - 5.85 (m, 

1 H, dihydrofuran CH=QD; NMR (CDCI3) 5 29.37, 32.80, 74.93, 87.31, 124.52, 

126.00, 129.51, 144.03; IR (neat) 3005, 2959, 2903, 1475, 1462, 1364, 1263, 1088, 

1065,1020, 970, 800 cm-1; HRMS: calcd for CioHieO m/z 152.12012, found m/z 

152.12039. 

(Z)-l-(3-Cyclopentenyl)-4-(2-tetrahydropyranoxy)-l-butene (Table 2, entry 

92) 

This diene was isolated as a mixture of two diastereomers and was purified over silica 

gel using hexane /EtOAc (5 : 1). % NMR (CDCI3) 5 1.41 -1.80 (m, 6 H, CH2's), 

1.94 - 2.10 (m, 2 H, C=C-CH2), 2.02 - 2.36 (m, 4 H, C=C-Œ2's), 3.29 - 3.45 (m, 2 

H, C=C-CH2-CH2-0), 3.52 - 3.57 (m, 1 H, C=C-CH-C=C), 3.62 - 3.71 (m, 1 H, 

C(H)H-0), 3.75 - 3.83 (m, 1 H, C(H)H-0), 4.52 (dd, 1 H, / = 6.9 Hz, J = 3.3 Hz, O-

CH-0), 5.20 - 5.29 (m, 2 H, THPOŒ2CH2-CH=CH), 5.43 - 5.52 (m, 1 H, 
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cyclopentenyl CH=CH), 5.65 - 5.70 (m, 1 H, cyclopentenyl CH=Cii); (there are 

overlapping 13c signals); 13C NMR (CDCI3) S 19.37, 25.35, 28.00, 30.81, 30.91, 

31.90, 32.05, 32.75, 43.29, 48.33, 61.92, 66.89, 67.01, 98.36, 98.41, 124.43, 

124.79, 130.74, 133.91, 134.01, 135.66, 135.84; IR (neat) 3051, 3005, 2941, 2869, 

1652,1076,966 cm"l; HRMS: calcd for C14H22O2 m/z 222.16198, found m/z 

222.16165. 

(^)-l-(3-CyclopentenyI)-3-(2-tetrahydropyranoxy)-l-octene (Table 2, entry 

97) 

This diene was isolated as a mixture of 3 diastereomers and was purified over silica gel 

using hexane /EtOAc (4:1) as the eluent.  NMR (CDCI3) 5 0.88 -  2.33 (m, 21H, 

CH2'S and Œ3), 3.29 - 3.30 (m, 1 H, CH-0), 3.35 - 3.49 (m, 1 H, C=C-CH-C=C), 

3.87 - 3.88 (m, 1 H, C(H)H-0), 4.03 - 4.66 (m, 1 H, C(H)H-0), 4.67 (s, 1 H, 0-CH-

O), 5.20 (dd, 1 H, / = 15.3 Hz, / = 8.4 Hz, C5-CH=CH), 5.50 - 5.59 (m, 2 H, 

C5-CH=CH and cyclopentenyl CH=CH), 5.76 - 5.77 (m, 1 H, cyclopentenyl CH=CH); 

(there are overlapping I3c signals) 13c NMR (CDCI3) 8 19.52,19.77, 19.93, 22.56, 

24.83, 25.30, 25.50, 25.63, 30.67, 30.78, 30.86, 31.80, 32.62, 34.78, 35.81, 48.04, 

48.10, 61.98, 62.41, 75.71, 75.77, 77.75, 94.29, 97.46, 97.52, 128.62, 130.00, 

131.05, 131.09, 131.26, 135.56, 133.65, 133.83, 135.02, 135.10, 137.80; IR (neat) 

3053, 1664, 1284, 1261, 1201, 1184, 1161, 1130, 1112, 1078, 1035, 1020, 985, 937, 

910 cm'l; HRMS: calcd for C18H30O2 nVz 278.22459, found m/z 278.22448. 
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Methyl cycIopent-2-enylideneacetate (Table 2, entry 108) 

This diene was purified over silica gel using hexane / EtOAc (4: 1) as the eluenL 

NMR (CDCI3) 5 2.48 - 2.52 (m, 4 H, CH2's), 3.08 (d, 2 H, 7 = 7.2 Hz, C=C-Œ2-

C=0), 3.67 (s, 3 H, OCH3), 5.45 (t, 1 H, / = 7.2 Hz, C=CH-CH2), 6.05 - 6.07 (m, 1 

H, cyclopentenyl CIi=CH), 6.14 (d, 1 H, / = 5.7 Hz, cyclopentenyl CH=CH); 

NMR (CDCI3) S 25.83, 31.70, 34.75, 51.44, 109.64, 133.86, 137.62, 150.12, 172.21; 

IR (neat) 3157, 3057,2953,2930,1740,1612,1259,991, 914 cm-1; HRMS: calcd for 

C9H12O2 m/z 152.08373, found m/z 152.08362. 

Ethyl 2-(3-cyclopentenyl)propenoate (Table 2, entry 131) 

This diene was purified over silica gel using hexane / EtOAc (4 :1) as the eluent. ^ H 

NMR (CDCI3) 6 1.31 (t, 3 H, 7 = 7.2 Hz, CH3), 2.28 - 2.37 (m, 4 H, CH2's), 3.76 (br 

s, 1 H, C=C-CH-C=C), 4.25 (q, 2 H, / = 7.2 Hz, O-CH2). 5.49 (d, 1 H, / = 1.2 Hz, 

C=C(iDH), 5.63 - 5.65 (m, 1 H, cyclopentenyl CH=CH), 5.88 - 5.91 (m, 1 H, 

cyclopentenyl CH=CH), 6.12 (d, IH, 7=1.2 Hz, C=C(H)H); NMR (CDCI3) S 

14.14, 31.16, 31.74, 46.22, 6049, 122.48, 132.00, 132.57, 144.43, 167.20; IR (neat) 

3055,2982, 2963,1718,1628,1261 cm-1; HRMS: calcd for C10H14O2 m/z 

166.21996, found m/z 166.09938. 

3-(3-Cyclopentenyl)-2-cyclohexenone (Table 3, entry 17) 

This diene was purified over silica gel using hexane / EtOAc (4: 1) as the eluent ^H 

NMR (CDCI3) 6 2.41 - 2.59 (m, 10 H, CH2's), 3.59 - 3.70 (m, 1 H, C=C-CH-C=C), 

5.74 - 5.77 (m, 1 H, cyclopentenyl CH=CH), 6.02 (s, 1 H, C=CH-C=0), 6.06 - 6.09 

(m, 1 H, cyclopentenyl CH=CH); NMR (CDCI3) 6 22.68, 27.74, 29.17, 32.09, 
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37.29, 52.67, 123.28, 130.51, 133.52, 169.27, 200.12; IR (neat) 3053, 2943, 2868, 

1668 cm'l; HRMS: calcd for C11H14O m/z 162.10447, found m/z 162.10424. 
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PART IV. PALLADIUM-CATALYZED INTRAMOLECULAR VINYLATION OF 

CYCLIC ALKENES 
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INTRODUCTION 

The synthesis of carbo- and heterocycles is a formidable challenge to the organic 

chemist. Quite frequently, the methodology employed must be stereoselective, mild in 

reaction conditions, and accommodating to a wide variety of important functional groups 

present in the molecule. The use of the Heck reaction for forming carbon-carbon bonds is 

well known in the literature. ̂  The exploitation of this methodology for intramolecular 

arylation of alkenes has been well examined.2-25 Examples of the intramolecular 

vinylation of alkenes, on the other hand, have appeared less frequently. In fact, prior to 

our initiation of the work described in the section entitied Results and Discussion, there 

were only five reports describing the use of the Heck reaction for making cyclic 

compounds from dienyl halides. Since 1985, a large number of bi- and polycyclic 

compounds have been synthesized using this novel methodology, and a review of these 

reactions follows. 

The use of palladium in the intramolecular vinylation of an alkene was first reported by 

Ziegler et al. 13 An interesting 16-membered ring lactone synthesis was achieved by the 

reaction of a vinylic iodide with an enone using one equivalent of a palladium salt under 

very dilute reaction conditions at 25 ®C (eq 1). 

The above lactone synthesis prompted Narula et alM to develop a Pd-catalyzed 

intramolecular vinylation process. A number of dienyl bromides were prepared and 

reacted in the presence of a catalytic amount of a Pd salt and piperidine to afford five-

membered ring products in good yields (eqs 2 and 3). Both reactions involve the 
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HOzCH, 25 "C, CH3CN, 11 h 
(1) 

55% 

Br 

l%Pd(0Ac)2 
2 % Pfo-Ton, , 

3 equiv piperidine 
CH3CN, 100 °C 

68 % 9 % 

l%Pd(0Ac)2 
2 % Pfa-Tom 

3 equiv piperidine 
CH3CN, 100 "C ÇLO 

Et 

(2) 

(3) 

4 5 

40 % 

formation of a ju-allylpalladium intermediate, and this species subsequently reacts with 

piperidine functioning as the nucleophile to yield 2 and 3 (Scheme I, all ligands were 

omitted in order to simplify the illustration). Product 2 results from the reaction of 

piperidine on C-1, while 3 comes from nucleophilic attack on the most hindered carbon of 

the 7t-allyl complex, C-3. A most interesting observation was made when a different 

solvent was employed in the reaction described in eq 2. Indeed, when benzene was used 
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164 

Pd(0) PdBr cr 

-

HPdBr + ^ Vh 

C'® 

-HPdBr 

2 and 3 

Pd(0) + ^ ^2 Br 

as the solvent, the yield of 3 increased to 29 % at the expense of 2! The reaction shown in 

eq 3, however, generated only one isomer from the reaction of piperidine with the least 

hindered carbon of the 7t-allyl intermediate (eqs 3 and 4). A notable feature of the above 

Et 

Qm 
(4) 
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reaction is the preferred formation of only five-membered ring compounds. This pre­

ference can only occur fiom attack of the vinylic palladium species onto the internal carbon 

atom of the alkene. This is unusual in light of the results obtained in the intermolecular 

Pd-catalyzed cross-coupling of a vinylic bromide with a 1-alkene in which vinylation 

occurrs selectively at the terminal olefinic carbon atom.1 When a tertiary amine such as 

EtgN was employed as the base, the reaction rates and yields of identifiable products were 

greatly decreased. 

Shi and co-workers^^ prepared a number of bromo dialkenyl ethers and cyclized them 

under similar Pd conditions (eqs 5 and 6). Again, there was a preference for 

Br 

60% 

forming five-membered ring products in both cases, but allyl 2-bromoallyl ether gave a 2 

1 mixture of five- and six-membered ring products (eq 6). Dihydropyran 8 undoubtedly 

comes from attack on the terminal carbon atom of the allyl ether moiety producing the six-

membered ring product. By increasing the steric hindrance of one of the olefinic carbons. 

l%Pd(0Ac)2 Et 

onr r 1 (5) 
3 equiv pipendine 

CH3CN, 100 "C oCO 
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oCO 
7 Br l%Pd(0Ac)2 

r Q 2%P(^TO1)3 44% (6) 
3 eauiv DiDeridine 3 equiv piperidine 

CH3CN, 100 "C 

OLO 
8 

19% 

bromo dialkenyl ether 9 cyclized to produce only a seven-membered cyclic ether 10 (eq 

7). Bromoallyl ether 11 which contained a cyclic alkene reacted to produce very little, if 

Br l%Pd(0Ac)2 

3%% 0 O 
CH3CN. 100 °c  ̂

9 
Ms 

10 

45% 

any, cyclized products (eq 8). The failure to cyclize presumably comes from steric 

2 % Pd(0Ac)2 
4 % Pfa-Ton^ XT J • J ^ No desired product (8) 

3 equiv piperidine 
J J ' CH3CN. 125°C 

hindrance around the cyclic alkene. A number of bromo dialkenylamines were reacted 

under similar catalytic reaction conditions (eq 9). Generally, low yields and bad mixtures 

of five- and six-membered cyclic amine products were observed. By increasing the size of 

the R group, a higher yield of 13 was obtained along with higher overall yields of 12 and 

13. Apparently, by increasing the steric hindrance around the internal olefinic carbon. 



www.manaraa.com

167 

Br R 

3 equiv piperidine 
CH3CN. 125 "C 

2%Pd(OAc)2 
4 % Pfo-Tom 

r, 125 "C 

R 

R 

^i2 &. 

H 15 

COMe 

Me 

38 

33 11 

38 38 

vinylation occurred increasingly on the terminal carbon atom. In general, five-membered 

rings are formed in preference to six-membered rings, whether the dienyl bromide is all 

carbon or contains an oxygen or a nitrogen atom. However, this preference may be 

altered if the double bond carbons are not simularly substituted. Unsubstituted olefinic 

carbons are more reactive than monosubstituted ones, and disubstituted olefinic carbon 

atoms do not react. 

Negishi and Miller^^ developed a novel Pd(0) method for synthesizing cyclopenta-

dienones (eq 10). Dienyl iodide 14, prepared from the allylzincation of 1-trimethylsilyl-

w-Hex TMS 
1 equiv Pd(PPh3)4 «-Hex TMS 

(10) 
CO, EtsN, THF 
60 "C, 18 - 24 h 

14 

54% 
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1-octyne, followed by a number of synthetic transformations, reacted with a stoichio­

metric amount of Pd(PPh3)4 under an atmosphere of CO to produce cyclopentadienone 

15. This reaction proceeds by the mechanism illustrated in Scheme H, Oxidative 

Scheme n 

14 
Pd(0) /i-Hex» .TMS 

Pdl 

CO /i-Hex. .TMS 

COPdl 

M-Hex 

15 +HPdI 

addition of 14 onto Pd(0) affords a vinylic palladium iodide, which under an atmosphere 

of CO produces an acylpalladium species. The latter then adds across the alkene double 

bond, followed by palladium hydride elimination to afford 15. This methodology was 

successfully applied to the synthesis of methylenemycin B (16) (eq 11). While this is a 

Me^ 
1 equiv Pd(PPh3)4 

CO, E%N, CH3CN 
100 °C, 1 d 

Me^ ^Me 

16 
51 % 

(11) 
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one-pot process affording the desired product, the major limitation of the reaction is that it 

is stoichiometric in palladium. All attempts to achieve the same transformation using only 

a catalytic amount of Pd reportedly failed. 

Later in 1985, Tour and Negishi^^ reported limited success in intramolecular acyl-

palladation to make a variety of cycloalkenone derivatives (eq 12). This interesting 

n-Hex 
n-Hex 

10 % Pd(PPh3)4 
CO.EtsN.CHsCN // /\ (12) 

100 °C, 1 d ^ 

18 

55 % 

reaction merits a closer examination of its mechanism (see Scheme HI). Under the same 

Scheme m 

17 
Pd(0) 

n-Hex 

n-Hex 

O 

Pdl 

CO 

n-Hex 

/ COPdl 

Pdl 

n-Hexi'v—TV 
18 

-HPdl 
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reaction conditions, two other dienyl iodides failed to cyclize and only polymeric material 

was recovered each time (eq 13). These side reactions were inhibited by running the Pd-

rt-Hex 

K 
S 

R 

10%Pd(OAc)2 

CO, EtsN, CH3CN 
100 "C 

Only polymeric material (13) 

R = H, TMS 

catalyzed carbonylation reactions in the presence of methanol (eq 14). The ester, which 

n-Hex 

S 
s % PdCl2(CH3CN)2 
CO, CH3CN. PhH 

CH30H,Et3N 

n-Hex R 

CO^ 
55 - 100 % 

(14) 

R = H,TMS 

was afforded in high yields, resulted from methanolysis of the alkylpalladium inter­

mediate. The following points are worth noting. Both Pd(0) and Pd(II) catalysts, such as 

Pd(PPh3)4, Pd(dba)2, PdCl2(PPh3)2, Pd(0Ac)2, and PdCh were effective in the above 

reactions. The mode of cyclization is only exo trig. No products formed via intramole­

cular Heck alkenylation were observed. When a longer chain dienyl iodide was employed 

in the hopes of obtaining large ring systems, tiie rate of methanolysis was faster than the 

rate of acylpalladation of the alkene (eq 15). 

n-Hex n-Hex 

S % PdCl2(CH3CN)2 
CO, CH3CN, PhH 

CH30H,Et3N 

/ CO^ (15) 
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Grigg et al. examined the use of Pd and Rh catalysts in the cyclization of bromo-

dienes 19 to determine if this was an efficient method for synthesizing a variety of dienes 

(eq 16). It was discovered that Pd(PPh3)4 produced a 1: 10 ratio of 20 to 21, while 

V 
X Y 

5 % Pd or Rh 
2 equiv base 

CHsCN.lOO^C 

19 

(16) 

X = H, CO^Et, Me, COMe 

Y = H, COgEt, COPh, COMe 

RhCl(PPh3)3 (Wilkinson's catalyst) produced the same products, but in the opposite ratio. 

In contrast to the above results, dienyl bromide 22 cyclized to provide only the 5-exo trig 

product regardless of the catalyst employed (eq 17). 

22 

cat. Pd or Rh 

23 

(17) 

Z=CH,N 70-90 

In a full paper, Grigg et al.^^ extensively investigated the reaction parameters control­

ling the stereoselectivity of the cyclization of a large number of dienyl bromides. A variety 

of ligands consisting of monophosphines, diphosphines, and phosphites were examined, 
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and PPhs was found to be the superior ligand in these reactions. Since Jeffrey 20-22 had 

reported the usefulness of tetra-n-butylammonium chloride in Pd-catalyzed arylation and 

vinylation of alkenes, a variety of tetraethylammonium salts were also examined, with the 

chloride emerging as the most effective salt The quaternary ammonium chloride was 

believed to function as an anion exchange agent which converts the intermediate vinylic 

palladium bromide to the chloride. The latter intermediate is believed to be a more reactive 

species in the vinylpalladation or palladium hydride elimination step of this reaction 

mechanism. 

At the same time as our publication of the intramolecular vinylpalladation of cyclic 

alkenes, Negishi et al.^^ reported on an efficient synthesis of carbocyclic compounds in 

like manner. A number of dienyl iodides were prepared and reacted under Pd(0) 

conditions (eqs 18 to 21 ). In general, all cases proceeded to provide isomeric mixtures of 

COjEt COoEt COoEt 

2 equiv EtsN, CH3CN 
THF, 10 h, reflux 

3 % Pd(PPh3)4 

n-Bu 

(18) 

%-Bu n-Bu 

(4 1) 

86% 

H H 

1 equiv EtgN, CH3CN 
Bu" THF, Ih. reflux 

3 % Pd(PPh3)4 

(9 1) 

70% 
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a^^Hex» s%pd(pph3)4 

J lequivEtsN.CHsCN 
THF. 2 h. reflux 

n-Hex «-Hex 

A A 

(9 : 1) 

70% 

(20) 

3 % Pd(PPh3)4 

2 equiv Et3N, CH3CN EtO^-
THF, 6 h, reflux 

«-Bu 

A 

(9 

«-Bu 

A. 
+ EtOf. 

(21) 

SX 

1) 

81 % 

products in good to excellent yields. The presence of an ester group appears to slow the 

reaction rate (eqs 18 and 21). In eq 20, substituting EtgN by two equivalents of NaOAc 

provided the cyclized products in a combined 97 % yield. Furthermore, the choice of 

Pd(0) catalyst is critical; using Pd(dba)2 in eq 19 produced less than 10 % of the cyclized 

products after 10 hours. 

O'Connor et al.^ obtained complete regiocontrol in the vinylation reactions of a,P-

unsaturated carbonyl compounds (eqs 22 and 23). 

n-Bu 

CO^ 
5%Pd (PPh3)4 

COîMe 
EtsN, CH3CN 

50 -100 °C 
«-Bu 

,C02Me 
fl l[^ (22) 

CO^ 
63% 
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C0^4fe 

MeOf 

5%Pd (PPh3)4 

EtsN, CH3CN 
50 -100 "C 

XT 
CO^Me 

COjMe 

(23) 

COjMe 

91 % 

Using the above methodology, Zhang, O'Connor, and Negishi^S developed a novel 

[3 + 2] annulation procedure employing 24 as a 3-carbon synthon (eqs 24 and 25). 

1) LDA/HMPA 

2) 24 

24 

3-S%Pd (PPh3)4 

E%N, THF 
Bu" CH3CN 

100 °C, 6 h H M-Bu 

OEt 1) LDA/THF 

2) 24 

3) LAH 

4) HCl 

(25) 
Et3N, THF 

CH3CN, 100 "C. 6 h ,Bu" 

Bu" 
26 

Recently, Sato and co-workers^  ̂reported the Pd-catalyzed asymmetric synthesis of a 

number of cw-decalin derivatives employing chiral ligands (eq 26). A number of 
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R R 

00 ligand 

catPd(0) CD (26) 

H 

27 28 

different Pd salts, ligands, bases, and solvents were first investigated in order to obtain the 

optimum reaction conditions for the cyclization of 29. It was discovered that Abelman et 

al.^ and Larock et al.9 silver procedure provided the highest yield of 30 (eq 27). The 

stereochemistry of the bridgehead groups of 30 was unequivocally determined to be cis by 

iR NMR (NOE) spectroscopy. Then a variety of optically active bidentate ligands and 

solvents were examined in order to obtain optimized reaction conditions for the preparation 

of 30 in high product yield and % ee. After much effort, it was discovered that (/?)-

BINAP27 and l-methyl-2-pyrrolidinone as solvent afforded 30 in 74 % yield and 33 % 

In summary, a wide variety of dienyl halides have been cyclized under a variety of Pd-

catalyzed conditions to form bicyclic and polycyclic compounds. Even though reaction 

conditions have been mild, mixtures of regioisomers are common. It's clear there exists a 

need to develop a procedure that will provide the desired cyclized product in high yield and 

under mild conditions. The development of such a procedure is discussed in the following 

section. 

5 % Pd(0Ac)2 

5.5 % diphos, AgaCOa 
CH3CN. 60 °C, 5 h H 

30 

68 % 

(27) 

29 

ee. 
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RESULTS AND DISCUSSION 

Each of the nine dienyl halides used for this investigation was prepared from a 

multistep sequence. Nitrile 31 and ester 32 were prepared by quenching the appropriate 

CN CO^ ÇN 

CO œ CO 
32 33 

o:X o a Me 
E = CO^t ^ ^ ^ 

34 35 36 

O 

JL Br V 

37 38 39 

carbanions with (Z)-1,4-diiodo-1 -butene (40) prepared as shown in Scheme IV (eq 28). 
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Scheme IV 

HCaCCHgCHzOH 
0.5 equiv. Hg(0Ac)2 

I2, ether, 25 ®C, 48 h 

ICsCCHgCHzOH 

100% 

DHP, 10 % PPTS 

CH2CI2,25 °C. 4 h 

V" ^CHgCHgOTHP 

66% 

PPh3, BT2 
CH2CI2, o®c 

90% 

K02CN=NC02K 

H0Ac.Pyr.CH30H 

2 equiv. Nal 

acetone, 18 h, 25 °C 

ICsCCHiCHiOTEIP 

99% 

40 

100% 

LDA 40 

THF/HMPA 
-78 "C 

CD " THF, -78 °C 

31 Y = CN, 78 % 

32 Y = COzEt, 88% 

Nitrile 33 was prepared in the same manner as 31 and 32 except (Z)-l,3-diiodo-2-

methylpropene (41) was used as the halide (see Scheme V and eq 29). Diethyl malonate 
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Scheme V 

HCsCCHjpH 
3 MeMgl 

Cul, ether, 0°C ether, 0 °C 
V" ^CHjpH 

59% 

MsCl, EtsN 

THF, 0 °C, 3h 

2eqiiiv.NaI Ms 

100% 
I""" acetone.2h.25oc l""" 

41 

100% 

ÇN 
LDA 41 

U J (29) 
THF / HMPA THF, -78 "C 

-78 "C 33 

68% 

34 was prepared from the alkylation of diethyl malonate with 3-bromocyclohexene 

followed by alkylation by 41 (Scheme VI). Dienyl ethers 35 and 36 were prepared from 

2-cyclopenten-l-ol and 2-cyclohexen-l-ol, respectively, in quantitative yields using the 
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Scheme VI 

EtOfCHgCO# 
1) NaH, DMF. THF. 25 °C EtOgCŒCOgEt 

2) 0-» O 
E E 

41 

NaH. DMF 
THF. 25 "C 

E = COjEt 

34 

67% 

Williamson ether synthesis (eqs 30 and 31). Esters 37 and 38 were prepared from 2-

9-BBN 

2) HOCH2CH2NH2 

OH 

6 
48% 

1) NaH. THF, 25 °C 

2) 41. 80 °C. 2 h Cr;X" 
35 

100% 

OH 

1) NaH, THF, 25 °C 

2) 41. 80 "C, 2 h CCu (31) 

36 

100% 

cyclohexen-l-ol and the appropriate carboxylic acids using DEAD and PPhg in ether (eqs 

32 and 33). Finally, ether 39 was prepared from the coupling of alkyl iodide 42 
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O 

oV + rSi X I '''' ' II ether, 25 °C. 24 h 

37 

100% 

O 

CUI.HI DEAD.PPhg 

0»c ^C02H ether, 
HCsCCO^i CuITHI , (33) 

25 "C. 24 h 

38 

56 % 

(Scheme VU) and (Z)-l-icxio-2-methyl-1-propen-l-ol (eq 34). 

Scheme Vn 

1) LAH, ether MsCl, EtsN, THF 

61% 

OMs Nal, acetone 

24 h, 25 °C 
80% 

80% 
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CHjpH 2) 42 

1) NaH, THF 
(34) 

39 
Me 

20% 

Three different Pd(0) procedures (Procedure A: 2.5 mol % Pd(0Ac)2,1 equiv TBAC, 

3 equiv KOAc, DMF at 80 °C; Procedure B: 3 - 6 mol % Pd(0Ac)2,9-18 mol % PPhg, 

2 equiv AgaCOs, CH3CN at 80 "C; Procedure C: Procedure A plus 2.5 mol % PPhg) 

were employed in these cyclizations. Table 1 summarizes the results obtained from this 

study. 

Several points are worth noting. Both procedures A and B stereoselectively afford the 

desired bicycUc compounds in good to excellent yields (entries 1-12). Unfortunately, 

procedure A^ provides a bad mixture of regioisomers each time (entries 1, 3,5,7,9, and 

11). In fact, in one case, the major isomer (entry 7) was the undesired 1,5 - diene. How­

ever, when procedure B'^-^ was employed in cases where cyclization took place when 

using procedure A, only the desired 1,4-diene was afforded (entries 2, 4, 6, 8,10, and 

12). As Negishi et al.23 had observed, dienyl iodides 31 and 32 which contained a nitrile 

and an ester did cyclize more slowly than the other dienyl halides. However, this 

decelerating effect was not observed in the reaction of 34 (entries 7 and 8). The 

stereochemistry of bicyclic compounds 43 to 48 has been determined to be cis based on 

NMR spectral data^^, mechanistic arguments, and assignments made by others on similar 

products.'^'^l'29 This method was found to be incompatible with allylic esters, however. 

For example, ester 37 did not produce any of the desired product when procedure A was 

applied (entry 14). Instead, only 2-cyclohexenyl acetate was isolated in 52 % yield. 



www.manaraa.com

Table 1. PaUadium(0)-catalyzed Intramolecular Vinylation of Cyclic Alkenes 

Entry Dienyl Halide Pd (%) Procedure 

CN 

CD 
C02Et 

œ 

EtOjC COjEt 

2.5 A 
3.0 B 

2.5 A 
6.0 B 

2.5 A 
3.0 B 

7 I». Y 2.5 A 
8 3.0 B 

a The ratio in parentheses reflects the ratio of cyclic 1,4- to 1,5-dienes. If no ratio 
is reported, the product is essentially pure. 
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Time (d) Product ^ Yield (%) 

CN 

CD 4 (1:1) 79 
5 H 56 

43 

COjEt 

CD 2 (1:3) 48 
5 H 68 

44 

CN 

Ct̂ ' •CH3 
1  ( 1 : 1 )  8 1  
1 H 77 

45 

EtOzC COgEt 

Î V-^CH3 # 
46 

H 

CD. 1 (2:1) 60 
1 jj CH3 60 

47 
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Table 1. (continued) 

Entry Dienyl Halide Pd (%) Procedure 

cxx 11 2.5 A 
12 ^3 3 0 B 
13 2.5 C 

ii Ô Br 2.5 A 
3.0 B 
2.5 C 

O 

17 r 2.5 A 
18 3.0 B 
19 2.5 C 

CO 
20 2.5 A 
21 CHg 3.0 B 

^ Only unidentifiable polymeric material was recovered. 
c Only 2-cycIohexenyl acetate was recovered in 52 % yield. 

Only the dimer of the dienyl halide was recovered. 
® The yield of the product was approximated since large amounts of contaminants 

were also present. 
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Time (d) Product ^ Yield (%) 

da 
H 
48 

CHg (1.5 : 1) 92 
69 

Ob 

5 
7 
1 

H 

49 

Qc 
Qb 
Qd 

CCr° 
H 
50 

Ob 
Ob 
Od 

51 
Od 

10d.e 
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One possible explanation is that the Pd(0) species did not react with the vinylic bromide, 

but instead reacted more rapidly with the allylic ester functional group to generate a %-allyl-

palladium species which reacted with KOAc functioning as a nucleophile (Scheme VUI). 

This side reaction is actually well precedented^S since TC-allylpalladium complexes 

Scheme Vm 

Pd(0) 

PdOjCR 

(R = C(Br)=Œ2) 

O PdOfR 
OAc 

KOAc 
+ KOjCR +Pd(0) 

are usually made from the reaction of an allylic acetate and Pd(0). When procedure B was 

applied to ester 37 (entry 15), only unidentifiable polymeric material was generated. The 

polymerization presumably resulted from the reactive acrylate present in the molecule. 

Ester 38 produced only polymeric material when using either procedure A or B (entries 17 

and 18). It's surprising to find that no 2-cyclohexenyl acetate was produced when 

procedure A was employed. Procedure C was briefly examined as a possible alternative to 

procedure B. Dienyl iodide 36 was completely consumed within 24 h when using 

procedure C, but a mixture of unidentifiable organic products was produced (entry 13). 

However, when 37 and 38 were allowed to react under these same reaction conditions, a 
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significant amount of the dimeric 1,3-dienes corresponding to the starting materials was 

observed by GC/MS each time (entries 16 and 19). An attempt to synthesize a bicycUc 

compound containing an eight-membered ring also failed under these conditions. Indeed, 

when 39 was allowed to react using procedure A (entry 20), all of 39 was consumed in 

one day and only a tarry unidentified substance was recovered. Employing procedure B in 

this same reaction provided approximately a 10 % yield of the desired compound 

contaminated with an unknown organic compound (entry 21). In fact, Baker 30 had also 

encountered the same difficulties in his intramolecular aiylation studies (eq 35). 

RnxeduieA 

80 °C 

(35) 

14% 
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CONCLUSION 

A general, Pd-catalyzed method useful for the preparation of bicyclic dienes has been 

developed. This method employing procedure A or B affords bicyclic compounds in high 

yields and in a stereo- and regioselective manner under mild reaction conditions. 

Procedure A's major limitation has been the tendency to form large amounts of the 

undesired homoallylic side product Procedure B which has been used quite successfully 

to suppress the formation of the homoallylic product in the intennolecular vinylation of 

cyclic alkenes, provides the desired bicyclic products in high yields. In tiie intramolecular 

vinylation reactions, procedure B proved again to be successful in providing only the 

desired bicyclic 1,4-dienes. Procedure C proved to be problematical as it tends to produce 

mixtures of many unidentifiable organic products. The limitations of both procedures A 

and B appear to be their incompatibili^ with dienyl iodides containing an allylic ester. 
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EXPERIMENTAL SECTION 

Equipment 

NMR spectra were recorded on a Nicolet NT-300 spectrometer (operating at 300 MHz 

for hydrogen nuclei and 75 MHz for carbon nuclei). Infrared spectra were obtained on an 

IBM IR/98 FT-IR. Mass spectral data were obtained on a Kratos high resolution mass 

spectrometer. Gas chromatographic analyses were performed by using a Varian 3700 or a 

Hewlett Packard 5890 gas chromatograph equipped with a 3 % OV-101 on Chromasorb 

W packed column (Varian 37(X) or HP 5890) or an HP-1 megabore column (HP 5890). 

Reagents 

Propargyl alcohol, 3-butyn-l-ol, cyclohexanone, 2-cyclopenten-1 -one, 2-

cyclohexen-l-ol, methyl magnesium bromide, copper(I) iodide, triphenylphosphine, silver 

carbonate, tetra-rt-butylammonium chloride, /i-butyllithium, and diisopropylamine were all 

obtained from Aldrich. Tetra-n-butylammonium chloride was purchased from Lancaster 

Synthesis. Tetrahydrofuran was distilled immediately prior to use from sodium benzo-

phenone. iV,A^-Dimethylformamide, CHgCN, and CH2CI2 were all distilled from calcium 

hydride and stored over dry molecular sieves. 2-Cyclopenten-l-ol was prepared by a 

procedure reported by Krishnamurthy and Brown,31 and 2-(3-cyclopentenyl)ethanol and 

l-iodo-2-(3-cyclopentenyl)ethane were prepared using Dr. Song's procedure (the latter 

compound was prepared using the iodide instead of the chloride).32 1-Cyano-l-

cyclohexene^^ and l-carboethoxy-l-cyclohexene^^ were generously supplied by Dr. 

Bruce Baker.^O 
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4-Iodo-3-butyn-l-ol 

In a 500 mL round bottom flask equipped witii a stirring bar were added ether (150 

mL), Hg(0Ac)2 (9.57 g, 30.0 mmol), and 3-butyn-l-ol (4.20 g, 4.60 mL, 60.0 mmol). 

Solid I2 (15.3 g, 60.0 mmol) was added slowly in portions to the rapidly stirred mixture. 

After the addition was complete, the flask was sealed with a septum and the contents were 

stimred for 48 hours at room temperature in the absence of light The red mercuric iodide 

was removed by filtering the reaction mixture through a short column of Celite. The 

solids were then washed with ether (3 x 50 mL). The filtrate was washed with saturated 

sodium bicarbonate (2 x 75 mL) and Na2S203 (5 %, 75 mL), and the organic layer was 

dried over anhydrous MgSO#. After the solvent was removed, the iodoalkyne was 

produced in 100 % yield as a light green oU. NMR (CDCI3) 5 2.63 (t, 2 H, 7 = 6.3 

Hz, CH2CH2OH), 3.73 (t, 2H,y = 6.3 Hz, CH2OH); IR (neat) 3358, 1713, 1047 

cm-1. 

l<Iodo-4-(2-tetrahydropyranyloxy)-l-butyne 

In a 250 mL round bottom flask equipped with a stirring bar were added dry CH2CI2 

(210 mL) and l-iodo-3-butyn-l-ol (5.88 g, 30.0 mmol). Once the contents were stirring, 

PPTS (0.753 g, 3.00 mmol) was added all at once. After the solution was stirred for four 

hours, it was combined with ether (200 mL), and washed with saturated aqueous NaCl 

(200 mL). The aqueous layer was discarded and the remaining organic layer was washed 

with water. The organic layer was dried over anhydrous MgS04, filtered, and 

concentrated in vacuo to afford the desired product as a light yellow oil in 99 % yield. ^H 

NMR (CDCI3) Ô 1.53 - 1.84 (m, 6 H, CH2's), 2.67 (t, 2H, J = 6.9 Hz, Œ2), 3.54 -
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3.84 (m, 4 H, CHz-O's), 4.64 (t, 1 H, / = 1.8 Hz, O-CH-0); IR (neat) 2943, 2872, 

1732, 1200, 1136 cm-1. 

(Z)-l-Iodo-4-(2-tetrahydropyranyloxy)-l-butene 

Freshly prepared dipotassium azodicarboxylate (14.4 g, 74.0 mmol) was added to a 

250 mL round bottom flask equipped with a large stirring bar, addition funnel, and a 

reflux condenser. To the flask were also added pyridine (15 mL), methanol (30 mL), and 

l-iodo-4-(2-tetrahydropyranyloxy)-l-butyne (5.64 g, 20.0 mmol). In the addition funnel, 

a mixture of acetic acid (18 mL) and methanol (18 mL) was added. The methanol - acetic 

acid mixture was added slowly at such a rate only a gentie reflux was obtained. After the 

addition, the mixture was stiired at 25 °C for 24 hours. The mixture was poured into a 

500 mL round bottom flask containing ether (200 mL). The contents were stirred rapidly 

as ice - cold aqueous HCl (5 %, 100 mL) was added slowly. The organic layer was 

separated and the aqueous layer was extracted with ether (2x50 mL), saturated Na2C03 

(2 X 50 mL), and water ( 50 mL). The organic layer was concentrated in vacuo and the 

residual oil was added to /z-butylamine (10 mL), and the mixture was stirred for three 

hours at room temperature to remove the overreduced product. The mixture was then 

added to ether (75 mL), washed with water (2 x 100 mL), cold aqueous HCl (5 % 150 

mL), and water (100 mL). The ether layer was dried over anhydrous MgS04, filtered, 

concentrated in vacuo, columned over basic alumina using hexane as the eluent to afford 

the desired product in 66 % yield. ^H NMR (CDCI3) Ô 1.57 - 1.75 (m, 6 H, CH2's), 

2.45 (q, 2 H, / = 7.2 Hz, CH2), 3.46 - 3.90 (m, 4 H, CH20's), 4.61 (t, 1 H, 7 = 1.8 

Hz, O-CH-0), 6.30 - 6.32 (m, 2 H, CH=CHI); JR (neat) 3019,2939, 2868,1200, 

1136,1121,1074, 1034, 984 cm-1. 
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(Z)-4-Bromo-l-iodo-l-butene 

In a dry 250 mL round bottom flask equipped with a stiiring bar were placed dry 

methylene chloride (100 mL) and freshly recrystallized PPhg (5.76 g, 22.0 mmol). An 

addition funnel was attached and the contents were stirred and cooled to 0 °C. Bromine 

(3.48 g, 1.12 mL, 22.0 mmol) in anhydrous CH2CI2 (10 mL) was added dropwise to the 

solution with rapid stirring. After the addition, the solution was allowed to stir for 30 

minutes before (Z)-l-iodo-4-(2-tetrahydropyranyoxyl)-l-butene (5.64 g, 20.0 mmol) in 

methylene chloride (10 mL) was added dropwise. After the addition, the solution was 

stirred at 0 for two hours, allowed to come to room temperature and then stirred for 

one more hour. The reaction mixture was washed with water (2 x 50 mL), dried over 

MgS04, filtered, and concentrated in vacuo to a point such that only approximately 25 % 

of the solvent remained. This solution was then filtered through a short column of silica 

gel, and eluted using hexane as the eluent to remove the triphenylphosphine oxide. The 

hexane solution was concentrated in vacuo to afford the desired bromide as a light yellow 

oU in 90 % yield. iH NMR (CDCI3) 5 2.76 (dt, 2 H, 7 = 6.6 Hz, 7 = 6.9 Hz, CH2), 

3.44 (t, 2 H, y = 6.9 Hz, CH2), 6.32 (dt, 1 H, / = 7.8 Hz, / = 6.6 Hz, ICH=aD, 6.45 

(d, 1 H, / = 7.8 Hz, IQi=CH); IR (neat) 3050, 2955, 2924, 2853, 1615, 1437, 1321, 

1285, 1261, 1231 cm-1. 

(Z)-l,4-Diiodo-l-butene (40) 

In a 50 mL round bottom flask equipped with a stirring bar were placed (Z)-4-bromo-

1-iodo-l-butene (4.68 g, 18.0 mmol), reagent grade acetone (30 mL), and sodium iodide 

(5.40 g, 36.0 mmol). The flask was sealed and the contents were allowed to stir for 24 

hours at room temperature. The solution was combined with ether (50 mL) and washed 
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with water (50 mL). The organic layer was then washed with freshly prepared Na2S203 

(10 %, 50 mL), saturated NaCl (50 mL), dried over anhydrous MgS04, filtered, 

concentrated in vacuo, and columned over silica gel using hexane as the eluent to afford 

the desired alkyl iodide as a colorless oil in 1(X) % yield. NMR (CDCI3) S 2.72 - 2,79 

(m, 2 H, CH2), 3.20 (t, 2 H, / = 6.9 Hz, %), 6.25 (ddd, 1 H, / = 6.9 Hz, / = 6.9 Hz, 

J = 6.9 Hz, ICH=Cii), 6.45 (d, 1 H, / = 6.9 Hz, ICH=CH); IR (neat) 3071, 2955, 

2924,2853,1285,1261 cm'l. 

(Z)-3-Iodo-2-inethyI-2-propen-l-ol 

In a flame-dried 3-necked round bottom flask equipped with a mechanical stirrer, and 

an addition funnel were added copper(I) iodide (11.44 g, 60 mmol) and propargyl alcohol 

(3.36 g, 60 mmol). After ether (224 mL) was added, the contents were cooled to 0 °C 

with stirring. Methylmagnesium bromide (60 mL, 180 mmol, 3 M) was added dropwise 

and care was taken to add the first 20 mL slowly due to a rapid evolution of hydrogen gas. 

After the Grignard addition was complete, the reaction was slowly warmed to room 

temperature and then it was stirred for four hours. The dark green reaction mixture was 

then cooled to 0 ^C, followed by rapid addition of reagent grade I2 (16.77 g, 66 mmol). 

The reaction was slowly warmed to room temperature and stirring was continued at room 

temperature for one hour; then the reaction mixture was cooled back down to 0 °C before 

saturated NH4CI (140 mL) was carefully added. The ether layer was separated and the 

aqueous layer was extracted with ether (3 x 70 mL). The combined organic layers were 

washed with freshly prepared 10 % Na2S203 (140 mL), saturated NaCl (140 mL), dried 

over anhydrous Na2S04, filtered, concentrated in vacuo, and the yellow oil was vacuum 

distilled (52-56 oC, 0.1mm Hg) to afford the desired allylic alcohol in 59 % yield. ^H 
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NMR (CDCI3) 5 1.97 (s, 4 H, CH3 and OH), 4.29 (s, 2 H, CH2), 5.97 (s, 1 H, HC=C); 

IR(neat) 3323, 3055, 2970,1618,1034,1013 cm-i. 

(Z)-2-Methyl-3-iodo-2-propenyI methanesulfonate. 

In a dry 25 mL round bottom flask equipped with a stirring bar were added (Z)-3-

iodo-2-methyl-2-propen-l-ol (1.21 g, 6.10 mmol) and THF (12 mL). The flask was 

sealed and cooled toO °C with stirring. Triethylamine (0.986 g, 9.76 mmol, 1.36 mL) 

and methanesulfonyl chloride (0.974 g, 8.54 mmol, 0.66 mL) were injected sequentially. 

The mixture was allowed to warm to room temperature over a period of one hour, and the 

mixture was allowed to stir at room temperature for three additional hours. The mixture 

was poured into a separatory funnel containing water (75 mL) and ether (50 mL). The 

aqueous layer was removed, and the organic layer was washed with saturated NH4CI (75 

mL), dried over anhydrous MgS04, filtered through a fritted funnel, concentrated in 

vacuo to afford the crude mesylate in quantitative yield. This mesylate was immediately 

taken on to the next step without further purification. ^H NMR (CDCI3) 5 2.01 (s, 3 H, 

C=C-CH3), 3.07 (s, 3 H, SO2CH3), 4.84 (s, 2 H, C=C-CH2), 6.28 (s, 1 H, HC=C). 

(Z)-l,3-Diiodo-2-inethyI-l-propene (41) 

In a dry 50 mL round bottom flask equipped with a stirring bar were placed the crude 

mesylate, reagent grade acetone (20 mL), and Nal (1.38 g, 9.15 mmol). The mixture was 

stirred at room temperature for two hours. The mixture was diluted with water (25 mL) 

and ether (25 mL). The aqueous layer was removed, and the organic layer was washed 

with water (50 mL), and freshly prepared 10 % Na2S203 (50 niL), and then dried over 

anhydrous MgS04, filtered, concentrated in vacuo, and columned over silica gel using 
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hexane to afford the desired compound in 68 % overall yield. NMR (CDCI3) 5 2.07 

(s, 3 H, CH3), 4.00 (s, 2 H, CH2), 6.15 (s, 1 H, ICH=); IR (neat) 3055, 2982, 2939, 

1603, 1431, 1373, 1279,1161, 1148, 1024 1009, 773, 671 cm'l. 

Diethyl 3-cyclohexenylmalonate 

In a dry 50 mL round bottom flask containing a stirring bar was placed NaH (50 % in 

mineral oil, 0.552 g, 11.5 mmol). The flask was sealed and the contents were flushed 

with N2 and a N2 atmosphere was maintained. DMF (6.6 mL) was injected, followed by 

diethyl malonate (1.54 g, 1.46 mL, 9.60 mmol), which was injected slowly since quite a 

bit of hydrogen and heat evolved. The reaction was allowed to stir for 45 minutes at room 

temperature at which time the solution was a clear yellow liquid. 3-Bromo-l-cyclohexene 

(1.28 g, 0.92 mL, 8.00 mmol) dissolved in THF (3.40 mL) was slowly injected into the 

reaction mixture. A white precipitate, sodium bromide, formed almost immediately and 

the mixture was allowed to stir overnight at room temperature. The reaction mixture was 

poured into a separatory funnel containing water (30 mL) and ether (30 mL). The organic 

layer was separated and the aqueous layer was extracted with ether (3 x 25 mL). The 

combined ether layers were washed with saturated solutions of NaCl, twice with NH4CI, 

and water. The organic layer was dried over anhydrous MgS04, filtered, concentrated in 

vacuo to afford a residue, and columned over silica gel using hexane / EtOAc (6 :1) to 

afford the desired malonate in 100 % yield. NMR (CDCI3) 6 1.19 (t, 6H,/ = 7.2 

Hz, CHs), 1.29 - 1.36 (m, 1 H, QiH), 1.45 - 1.52 (m, 1 H, Clffl), 1.62 - 1.74 (m, 2 

H, Œ2), 1.91 - 1.96 (m, 2 H, C=C-CT2), 2.77 - 2.86 (m, 1 H, Et02C-CH-CIi-C=C), 

3.16 (d, 1 H, y = 7.5 Hz, Et02C-CH-C02Et), 4.12 (q, 4 H, / = 7.2 Hz, CH2's), 5.50 

(dd, 1 H, / = 10.2 Hz, / = 2.7 Hz, CH=CH), 5.65 - 5.71 (m, 1 H, CH=CH); 
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NMR (CDCI3) 8 13.09, 20.79, 24.77, 26.45, 35.08, 56.93, 60.98, 127.40, 129.09, 

168.20; m (neat) 3024,2980,2864, 1735, 1734,1463,1446, 1367, 1329, 1296, 1229, 

1177,1096,1030, 976,721 crorh HRMS: calcd for C13H20O4 m/z 240.13616, found 

m/z 240.13583. 

Dienyl iodide 31 

A dry 50 mL round bottom flask containing a stirring bar was flushed with N2 and a 

positive N2 atmosphere was maintained. THF (5 mL) and diisopropylamine (0.541 g, 

0.75 mL, 5.35 mmol) were sequentially injected. After the solution was cooled to -78 °C, 

n-butyllithium (2.62 mL, 5.87 mmol, 2.24 M) was injected. The solution was allowed to 

stir and steadily warm up to -20 over a period of one hour. After the solution was 

cooled back down to -78 "C, the solution was stilted for 10 minutes before HMPA 

(0.958 g, 0.93 mL, 5.35 mmol) was injected. This solution was stirred for 30 minutes 

before 1 -cyano- 1-cyclohexene (0.514 g, 5.35 mmol) was injected, and 30 minutes later 

(Z)-1,4-diiodo-1 -butene (2.14 g, 6.94 mmol) was injected. The solution was then 

allowed to warm up to room temperature over a period of two hours. The reaction was 

quenched with water and combined with hexane. The organic layer was isolated and 

washed consecutively with aqueous HCl (10 %), saturated NH4CI, dried over anhydrous 

MgS04, filtered, concentrated in vacuo, and columned over silica gel using hexane / 

EtOAc (10:1) to afford the desired vinylic iodide in 78 % yield. 'H NMR (CDCI3) 5 

1.55 - 1.85 (m, 4 H, CH2's), 1.90 - 2.15 (m, 4 H, CH2's), 2.35 (dd, 2 H, 7 = 6.9 Hz, / 

= 6.9 Hz, C=C-Œ2), 5.56 - 5.61 (m, 1 H, CIi=CH-CCN)), 5.94 (ddd, 1 H, / = 9.6 

Hz, y = 4.2 Hz, y = 3 Hz, CH=ai-CCN), 6.22 (ddd, 1 H, / = 7.5 Hz, / = 6.9 Hz, J = 

6.9 Hz, ICH=CH), 6.29 (d, 1 H, 7 = 7.5 Hz, IQi=CH); NMR (CDCI3) 5 19.18, 
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24.49, 30.15, 32.59, 36.72, 37.47, 83.99, 122.85, 125.96, 131.55, 139.14; IR (neat) 

3068,3028,1229,1018 cm'h HRMS: calcd for CnHwIN m/z 287.01710, found m/z 

287.01736. 

Dienyl iodide 32 

In a flame-dried 25 mL round bottom flask containing a stirring bar and a nitrogen 

atmosphere was injected THF (2.5 mL). The flask was cooled to -78 °C and 

diisopropylamine (0.216 g, 0.300 mL, 2.14 mmol) was injected. After the amine solution 

was stirred for 10 minutes, n-butyllithium (1.03 mL, 2.57 mmol, 2.5 M ) was injected. 

The solution was slowly warmed to -20 °C over a period of one hour, cooled back down 

to -78 °C, stirred for 10 minutes, and then HMPA (0.383 g, 0.400 mL, 2.14 mmol) was 

injected. The solution was allowed to stir for 30 minutes before l-carboethoxy-l-

cyclohexene (0.330 g, 2.14 mmol) dissolved in THF (2.5 mL) was injected, the solution 

was stirred for one hour, and then (Z)-l,4-diiodo-1 -butene (1.12 g, 3.64 mmol) dissolved 

in THF (2.5 mL) was injected. The solution was stirred and allowed to come to room 

temperature overnight The reaction mixture was combined with water (50 mL) and 

hexane (50 mL). The organic layer was separated, washed with 5% HCI (2 x 50 mL), 

saturated Na2C03,5 % Na2S203, dried over anhydrous MgS04, filtered, concentrated in 

vacuo, and columned over silica gel using hexane / EtOAc (10:1) to afford the desired 

compound in 88 % yield. ^H NMR (CDCI3) 5 1.28 (t, 3 H, / = 6 Hz, CH3), 1.58 -1.80 

(m, 6 H, CH2 S), 2.00 (br s, 2 H, CH2), 2.07 - 2.22 (m, 2 H, CH2's), 4.10 - 4.21 (m, 2 

H, OCH2), 5.72 (d, 1 H, / = 10.2 Hz, CH=CHCC02Et), 5.81 (dt, 1 H, 7 = 3.3 Hz, J = 

10.2 Hz, CH=CHCC02Et), 6.10 - 6.20 (m, 2 H, ICH=CH); 13c NMR (CDCI3) 6 

14.33, 19.57, 24.85, 30.10, 37.78, 46.37, 60.49, 82.71, 128.74, 129.26 (2 peaks). 
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140.32, 175.46; IR(neat) 3068, 3026, 2979, 1726, 1448,1388, 1304, 1274, 1207, 

1028,729 cm-l; HRMS calcd for C13H19IO2 m/z 206.13068, found 206.13057. 

Dienyl iodide 33 

This dienyl iodide was syndiesize by a procedure identical to the one used for the 

synthesis of compound 31. After the crude product was columned over silica gel by 

using hexane / EtOAc / CH2CI2 (17 :1:1) the desired product was provided in 63 % 

yield. iH NMR (CDCI3) 5 1.70 - 2.09 (m, 6 H, CHi's), 2.12 (d, 3 H, / = 1.2 Hz, 

ICH=CCH3), 2.58 (d, 1 H, / = 13.8 Hz, C(H)H-CCN), 2.70 (d, 1 H, / = 13.8 Hz, 

C(H)H-CCN), 5.56 - 5.61 (m, 1 H, CH=CE-CCN), 5.94 (dt, 1 H, 7 = 9.9 Hz, 7 = 3.9 

Hz, CH=CH-CCN), 6.21 (d, 1 H, 7 = 1.2 Hz, ICH=); 13c NMR (CDCI3) S 18.71, 

23.91, 24.15, 32.09, 35.07, 46.65, 80.33, 122.78, 125.57, 130.85, 141.91; IR (neat) 

3005,2945,2864,2100,1445, 1178,781,735 cm'l; HRMS: calcd for C11H14IN m/z 

287.01710, found m/z 287.01695. 

Dienyl iodide 34 

In a dry 50 mL round bottom flask containing a stirring bar was placed sodium 

hydride (50 % in mineral oil, 0.256 g, 5.34 mmol). The flask was sealed and the contents 

were flushed with nitrogen and a positive nitrogen atmosphere was maintained. DMF (3.3 

mL) was injected, and diethyl 3-cyclohexenylmalonate (1.07 g, 4.45 mmol) dissolved in 

DMF (1 noL) was slowly added. The reaction was allowed to stir at room temperature for 

45 minutes and at this time the solution was a clear yellow liquid. (2^-l,3-Diiodo-2-

methyl-l-propene ( 1.78 g, 5.79 mmol) dissolved in THF (1.7 mL) was slowly injected 

into the reaction mixture. A white precipitate, sodium bromide, formed almost 
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immediately, and the mixture was allowed to stir overnight at room temperature. The 

reaction mixture was poured into a separatory funnel containing water (30 mL) and ether 

(30 mL). The organic layer was separated and the aqueous layer was extracted with ether 

(3 X 35 mL). The combined ether layers were washed with saturated solutions of NaCl, 

twice with NH4CI, and then water. The organic layer was dried over anhydrous MgS04, 

filtered, concentrated in vacuo, and columned over silica gel using hexane / EtOAc (7:1) 

to afford the desired dienyl iodide in 67 % yield. NMR (CDCI3) 6 1.18 (t, 3 H, / = 

7.2 Hz, CH3), 1.19 (t, 3 H, / = 7.2 Hz, CHg), 1.72 - 1.96 (m, 9 H, CHi's and CH), 

2.88 (d, 3 H, / = 5.7 Hz, C=CŒ3), 4.09 (q, 2 H, / = 7.2 Hz, %), 4.10 (q, 2 H, / = 

7.2 Hz, CH2), 5.68 - 5.87 (m, 2 H, CH=CH), 5.90 (t, 1 H, / = 1.2 Hz, CH=CCH3); 

13c NMR (CDCI3) 5 19.95, 22.99, 24.20, 24.53, 24.88, 41.09, 41.96, 60.55, 60.96, 

61.03, 78.03, 127.92 (two peaks), 128.57, 144.84, 170.02, 170.17; IR (neat) 3033, 

2980, 2934, 1730, 1445, 1367, 1298, 1238, 1225,1146, 1094, 1055 cm-1; HRMS: 

calcd for C17H25IO4 m/z 420.07977, found m/z 420.07993. 

Dienyl iodide 35 

In a dry 25 mL round bottom flask equipped with a stirring bar was placed sodium 

hydride (0.200 g, 50 % in oil, 4.17 mmol). Immediately afterwards, the flask was sealed, 

flushed with nitrogen, and a positive nitrogen atmosphere was maintained with a bubbler. 

2-Cyclopenten-l-ol (0.234 g, 2.78 mmol) dissolved in THF (5 mL) was injected and 

hydrogen gas immediately evolved. After the contents were stiired at room temperature 

for 20 minutes, a reflux condenser was attached, and (Z)-1,3-diiodo-2-methyl-1 -propene 

(1.28 g, 4.17 mmol) dissolved in THF was injected. The flask was heated to 80 °C for 

two hours. The contents were poured into a separatory funnel containing water (50 mL) 
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and ether (25 mL). The layers were separated and the aqueous layer was washed with 

ether (2 x 25 mL). The combined ether layers were washed with saturated NaCl, dried 

over anhydrous MgSO#, filtered, concentrated in vacuo, and columned over silica gel 

using hexane / EtOAc (30:1) to afford the desired compound in 1(X) % yield. NMR 

(CDCI3) S 1.69 - 1.79 (m, 1 H, CgH), 1.86 (d, 3 H, / = 1.5 Hz, Œg), 2.04 - 2.25 (m, 

2 H, C=CŒ2), 2.39 - 2.49 (m, 1 H, CHH). 4.04 (s, 2 H, C=CCH2), 4.47 - 4.52 (m, 1 

H, CH-0), 5.78 - 5.82 (m, 1 H, Cïi=CH), 5.94 - 5.97 (m, 2H, CH=Qi and ICE=); 

13c NMR (CDCI3) 6 29.80, 31.03, 31.55, 73.08, 75.56, 84.03, 130.64, 135.78, 

144.76; IR (neat) 3055,1616,1437,1080 cm-l; HRMS: calcd for C9H13IO m/z 

264.00112, found m/z 264.00099. 

Dienyl iodide 36 

The procedure for the preparation of this compound was identical to the procedure 

above to prepare 35, except 2-cyclohexen-l-ol was employed. The ether was columned 

over silica gel using hexane / EtOAc (15 :1) to afford the desired product in 1(X) % yield. 

IH NMR (CDCI3) 8 1.49 - 1.83 (m, 4 H, CHz's), 1.91 (d, 3 H, / = 1.2 Hz, CH3), 1.95 

- 2.07 (m, 2 H, C=CCH2), 3.80 - 3.82 (m, 1 H, C=CCH-0), 4.12 (s, 2 H, C=CCH2), 

5.73 - 5.77 (m, 1 H, CH=CH), 5.81 - 5.87 (m, 1 H, CH=CH), 5.98 (s, 1 H, ICE=); 

13c NMR (CDCI3) Ô 21.94, 25.16, 28.26, 71.83, 72.64, 75.63, 127.44, 131.02 (two 

peaks), 144.82; IR (neat) 3026, 2928, 2860, 1448, 1437, 1319, 1283, 1084, 1051, 

1022,727,667 cm"l; HRMS: calcd for C10H15IO m/z 278.01677, found m/z 

278.01671. 
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Dienyl bromide 37 

In a SO mL round bottom flask were placed 2-bromopropenoic acid (0.825 g, 5.50 

mmol), ether (8 mL), and DEAD (1.2 g, 1.0 mL, 6.6 mmol), and the contents were 

rapidly stirred at room temperature. In a separate flask were placed PPhg (1.56 g, 6.00 

mmol) and 2-cyclohexen-l-ol (0.82 g, 0.83 mL, 8.4 mmol), and ether (8 mL). This latter 

solution was slowly added dropwise via syringe to the former solution. After the addition 

was complete, the solution was allowed to stir at room temperature for 24 hours. The 

mixture was diluted with ether, washed with saturated NaCl, and water. The organic layer 

was dried over anhydrous Na2S04, concentrated in vacuo, and columned over silica gel 

using hexane / EtOAc (10:1) to afford the desired ester in 100 % yield. NMR 

(CDCI3) 5 1.20 - 1.63 (m, 4 H, CH2's), 1.96 - 2.16 (m, 2 H, €=€-%), 5.32 (br s, 1 

H, C=C-CH-0), 5.74 - 5.78 (m, 1 H, CH=CH), 5.97 - 6.03 (m, 1 H, CH=CH), 6.26 

(d, 1 H, / = 1.5 Hz, CH=CBr). 6.94 (d, 1 H, / = 1.5 Hz, CH=CBr); 13c NMR (CDCI3) 

8 18.48, 24.67, 27.91, 70.39, 121.87, 124.56, 129.92, 133.26, 161.15; IR (neat) 

3034, 2937, 2870, 1720, 1610, 1385, 1259, 1099, 1049, 1007, 933, 908, 795, 731 

cm"l; HRMS: calcd for C9HiiBr02m/z 229.99424, found m/z 229.99418. 

Dienyl iodide 38 

This dienyl iodide was synthesized with a procedure identical to the one used for the 

synthesis of compound 37. The crude product after purification through silica gel using 

hexane / EtOAc (10:1) afforded the desired product in 56 % yield. ^H NMR (CDCI3) 

5 1.62 - 2.10 (m, 6 H, Œa's), 5.39 - 5.58 (m, 1 H, C=CCH-0), 5.74 - 5.80 (m, 1 H, 

CH=CIiCH-0), 5.99 (dt, 1 H, 7 = 10.2 Hz, / = 3.6 Hz, CH=CH-C-0), 6.89 (d, 1 H, J 

= 8.7 Hz, ICH=(3i-C02), 7.42 (d, 1 H, / = 8.7 Hz, ICH=CH-C02); NMR 
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(CDCls) 5 18.48, 24.56, 27.90, 68.23, 94.28, 124.95, 129.84, 132.64, 163.70; IR 

(neat) 3062, 3033,2941,2867, 1718,1650, 1251,1193, 1097, 1050, 1010, 808, 765 

cm"l; HRMS: calcd for C9H11IO2 m/z 277.98038, found m/z 277.98037. 

Dienyl iodide 39 

In a flame - dried 25 mL round bottom flask containing a stirring bar was placed 

sodium hydride (50 % in mineral oil, 0.264 g, 5.50 mmol). The flask was sealed, flushed 

with N2, and a N2 atmosphere was maintained. THF (1.5 mL) was injected and the 

contents were cooled to 0 °C. (Z)-3-Iodo-2-methyl-2-propen-l-ol (0.99 g, 5.0 mmol ) 

dissolved in THF (4.5 mL) was injected and the reaction mixture was allowed to stir and 

warm from 0°Cto room temperature over a period of one hour. The solution was cooled 

back down to 0 °C before 2-(3-cyclopentenyl)-l-iodoethane (1.3 g, 6.0 mmol ) in THF 

(3.0 mL) was added dropwise. The reaction was allowed to warm to room temperature 

overnight The mixture was poured into a separatory funnel containing water (25 mL) and 

ether (25 mL). The aqueous layer was removed and the organic layer was sequentially 

washed with saturated solutions of NaCl, NH4CI, and water. The organic layer was dried 

over anhydrous MgSO^, filtered, concentrated in vacuo, and columned over silica gel 

using hexane / EtOAc (12:1) to afford the desired product in 20 % yield. ^H NMR 

(CDCI3) 5 1.30 - 1.41 (m, 1 H, CHH), 1.44 - 1.53 (m, 1 H, CHH), 1.58 - 1.67 (m, 1 

H, CHH), 1.85 (d, 3 H, / = 1.2 Hz, CH3), 1.83 - 2.03 (m, 1 H, ODD, 2.18 - 2.29 (m, 

2 H, C=C-CH2), 2.66 - 2.72 (m, 1 H, C=C-CH), 3.38 (t, 2 H, 7 = 6.9 Hz, CH2CH2-O), 

4.01 (s, 2 H, CH2-O), 5.59 - 5.67 (m, 2 H, CH=CH), 5.95 (t, 1 H, / = 1.2 Hz, 

CH=CCH3); 13C NMR (CDCI3) 8 29.89, 31.87, 35.84, 42.46, 68.05, 75.22, 75.55, 

108.87, 130.36, 134.73, 144.46; IR (neat) 3044, 2928, 2851, 1614, 1431, 1371, 1348, 
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1281,1138,1103,1053,1020,719,667 cm-1; HRMS: calcdforCuHnlOm/z 

292.03242, found m/z 292.03264. 

Procedure A 

In a 10 mL round bottom flask equipped with a stirring bar were weighed Pd(0Ac)2 

(0.006 g, 2.5 mol %), TBAC (0.294 g, 1.0 mmol), KOAc (0.294 g, 3.0 mmol), and the 

dienyl halide (1.0 mmol). The flask was sealed with a septum, and the contents were 

flushed with N2. After DMF (2.0 mL) was injected, the contents were allowed to stir at 

80 °C for the time specified in Table 1. After GC analysis had indicated that all of the 

dienyl halide had been consumed, the reaction was diluted with ether (10 mL), and the 

mixture was poured into a separatory funnel containing ether (25 mL) and saturated 

NH4CI (50 mL). The organic layer was separated, dried over anhydrous MgS04, filtered, 

concentrated in vacuo, and the residue was columned over silica gel using hexane / EtOAc 

as the eluent. 

Procedure B 

In a 25 mL round bottom flask equipped with a side arm and a stirring bar were placed 

Pd(0Ac)2 (0.007 g, 3.0 mol %), PPhg (0.024 g, 9.0 mol %), AgzCOg (0.552 g, 2.0 

mmol), and dienyl iodide (1.0 mmol). The flask was affixed with a reflux condenser and 

the entire apparatus was sealed with a septum. The contents were flushed with N2 and a 

N2 atmosphere was maintained with a bubbler. After Œ3CN (12 mL) was injected, the 

mixture was stirred at 80 °C for the time specified in Table 1. After GC analysis of the 

mixture indicated that all of the starting material had been consumed, the mixture was 

diluted with ether (10 mL) and filtered through a plug of Celite to remove the Agi. The 
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solids were washed several times with ether, and the filtrate was added to a separatoiy 

funnel containing saturated NH4CI (50 mL). The organic layer was separated, dried over 

anhydrous MgS04, filtered, concentrated in vacuo, and columned over silica gel to afford 

the desired product Note: all cyclic 1,4-dienes reported in the following were prepared 

using procedure B. 

Diene 43 

This diene was columned over silica gel using hexane / EtOAc (10:1). NMR 

(CDCI3) Ô 1.12 - 1.63 (m, 2 H, Œ2). 1.65 - 2.41 (m, 6 H, CHa's), 3.00 (br s, 1 H, 

C=C-CH-C=C), 5.50 - 5.54 (m, 2 H, Œ=C-C-C=CH), 5.65 - 5.71 (m, 2 H, C=CH-C-

CH=C); 13c NMR (CDCI3) 5 21.50, 27.96, 33.95, 39.07, 54.02, 124.69, 126.40; IR 

(neat) 3030,2946,2229,1437,1261,1094,793 cm-l; HRMS calcd for C11H13N m/z 

159.10480, found m/z 159.10516. 

Diene 44 

The crude product was purified over silica gel using hexane / EtOAc (8 :1) to afford 

the diene. NMR (CDCI3) 5 1.24 (t, 3 H, / = 7.2 Hz, CH3), 1.75 - 1.79 (m, 4 H, 

CH2'S), 2.03 - 2.07 (m, 4 H, C=C-CH2's), 3.29 (br s, 1 H, C=CCHC=C), 4.14 (q, 2 

H, y = 7.2 Hz, OCH2), 5.60 (br s, 4 H, CH=CHCCH=CH); 13c NMR (CDCI3) S 

14.13, 22.13, 27.76, 36.95, 43.70, 60.27, 124.11, 128.77, 176.92; HRMS calcd for 

C13H18O2 m/z 206.2068, found m/z 206.13057. 
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Diene 45 

The crude product was purified over silica gel using hexane / EtOAc (10:1) to afford 

the diene. NMR (CDCI3) 5 1.65 (d, 3 H, / = 0.9 Hz, CH=CCH3), 1.76 - 1.80 (m, 

2 H, CH2), 1.99 - 2.01 (m, 1 H, CHH), 2.23 - 2.28 (d and m, 2 H, / = 15.3 Hz, Om 

and CQDH-CCN), 2.88 (d, 1 H, / = 15.3 Hz, C(H)H-CCN), 3.43 ( br s, 1 H, C=C-

CH-C=C), 5.15 (s, 1 H, CH=CCH3), 5.64 - 5.80 (m, 2 H, CH=CH-CCN); NMR 

(CDCI3) 6 16.16, 21.52, 29.17, 38.05, 48.33, 50.45, 124.60, 125.44, 125.49, 126.54, 

136.09; IR (neat) 3030,2900,2847,2233,1443,733 cm-1; HRMS: calcd for 

C11H13N m/z 159.10480, found m/z 159.10501. 

Diene 46 

This diene was purified over silica gel using hexane / EtOAc (8 : 1). % NMR 

(CDCI3) 5 1.12 - 1.20 (m, 6 H, CHs's), 1.61 (s, 3 H, CH3), 1.95 - 1.99 (m, 2 H, C=C-

CH2), 2.41 (br s, 1 H, ŒH), 2.45 (br s, 1 H, CHH), 2.58 - 2.63 (m, 3 H, C=C-CH2 

and CH), 2.95 - 2.97 (m, 1 H, C=C-CH-C=C), 4.09 (dt, 2 H, / = 2.4 Hz, J = 7.2 Hz, 

OCH2), 4.12 (q, 2 H, / = 7.2 Hz, OCH2), 5.07 (s, 1 H, CH=CCH3), 5.53 - 5.65 (m, 2 

H, CH=CH); 13c NMR (CDCI3) 5 13.95, 14.62, 19.33, 23.33 (two peaks), 25.40, 

30.64, 34.95, 36.61, 58.23, 61.18, 61.25, 121.97, 128.22, 129.17, 170.37, 170.57; 

IR (neat) 3020, 2964, 2933, 1734, 1445, 1259, 1231, 1182, 1123, 1084, 1030, 875, 

833 cm"l; HRMS calcd for C17H24O4 m/z 292.16747, found m/z 292.16793 

Diene 47 

This product was columned over silica gel using hexane / EtOAc (30:1) as the eluent 

to afford the desired product. ^H NMR (CDCI3) 5 1.65 (s, 3 H, CH3), 2.44 (d, 1 H, / = 
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18.3 Hz, C=C-CÏÏH), 2.61 - 2.70 (m, 1 H, C=C-CHH), 2.93 (br s, 1 H, C=C-CH-

C=C). 3.84 (d, 1 H, / = 15.3 Hz, ÇHH-0), 3.95 (d, 1 H, / = 15.3 Hz, CHH-O), 4.20 

(dd, 1 H, / = 5.1 Hz, / = 5.1 Hz, CHO), 5.62 - 5.64 (m, 2 H, CH=CH), 5.74 - 5.77 (m, 

1 H, Œ3C=CH); NMR (CDCI3) S 19.24, 40.04, 45.83, 66.74, 75.12, 118.99, 

127.62, 131.67, 133.73; IR(neat) 3057, 3020, 2932, 1429, 1117, 1097, 982, 847, 825 

cm"l; HRMS: calcd for C9H12O m/z 136.08882, found m/z 136.08904. 

Diene 48 

This diene was purified over silca gel using hexane / EtOAc (15:1). ^H NMR 

(CDCI3) 5 1.62 (s, 3 H, CH3), 1.66 - 1.74 (m, 1 H, CHH), 1.90 - 2.05 (m, 2 H, C=C-

CH2), 2.17 - 2.23 (m, 1 H, CHH), 2.59 - 2.62 (m, 1 H, C=C-CH-C=C), 3.82 (br s, 1 

H, CH-0), 4.00 (d, 1 H, / = 15.9 Hz, CHH-O), 4.08 (d, 1 H, / = 15.9 Hz, Crffl-O), 

5.46 - 5.49 (m, 2 H, CH=CH and CH3C=CH), 5.69 - 5.74 (m, 1 H, CH=CH); 

NMR (CDCI3) 5 18.69, 20.19, 26.71, 35.19, 68.28, 70.12, 121.33, 125.17, 126.63, 

132.87; IR(neat) 3020,2968, 2856, 1443, 1366,1175,1109, 1030, 837, 654 cm-1; 

HRMS: calcd for C10H14O m/z 150.10447, found m/z 150.1044. 
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GENERAL SUMMARY 

In this dissertation, the versatility of organopalladium chemistry in organic synthesis 

was demonstrated. In Part One of this work, the development of an improved procedure 

for intermolecular allylic arylation was discussed. Previous procedures (A and B) were 

ineffective in promoting the desired cross-coupling of cyclic alkenes and some aryl iodides 

containing certain organic functional groups. Procedure C, which is a simple modification 

of procedure A, was effective in circumventing these functional group difficulties found 

when procedures A and B were used, and it provided 3-arylcycloalkenes in high yields 

generally within 24 hours. 

In Part Two of this work, the power of procedure C was exploited in the development 

of a three-step syntiiesis of /rûn5-2,5-diaryltetrahydrofurans, which are known to be 

potent inhibitors of platelet activating factor. Indeed, when an aryl iodide was allowed to 

react with 2,3-dihydrofuran under the conditions of procedure C, 2-aryl-2,3-dihydro-

furans were produced along with only a trace amount of the allylic isomer. Taking 

advantage of the selectivity procedure C provided, this procedure was then used as the key 

step in this three-step synthetic process to provide only the biologically active trans 

isomer. This process represents the only process available today for producing only the 

trans isomer. 

In Part Three, the intermolecular vinylation of cyclic alkenes was explored. 

Procedures A, B, and C were employed, and a general metiiod for preparing 1,4-dienes 

was established. Vinylic iodides containing simple alkyl groups, as well as electron-

withdrawing groups, were examined. Cycloalkenes of ring sizes 5 through 8, and vinylic 

ethers such as 2,3-dihydrofuran and 3,4-dihydro-2f/-pyran were explored. In general. 
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procedure A was effective in providing the desired 1,4-diene when vinylic iodides 

containing simple alkyl groups and cyclopentene were cross - coupled. Unfortunately, 

cycloheptene, 2,3-dihydrofuran, and 3,4-dihydro-2Af-pyran all provided mixtures of 1,4-

and 1,5-dienes, and cyclohexene and cyclooctene proved to be inert under the reaction 

conditions of procedure A. Procedure B was effective in suppressing the formation of 

1,5-dienes providing only the 1,4-dienes in all cases where procedure A failed. 

Moreover, procedure B was also successful in the vinylation of cyclohexene. 

Unfortunately, cyclooctene remained inert when using procedure B. VinyUc iodides 

containing electron-withdrawing groups were found to be problematic as they provided 

bad regioisomeric mixtures of products when using procedure A. Procedures B and C 

afforded only symmetrical dimers corresponding to the starting material. 

In Part Four, the use of procedures A, B, and C in the intramolecular vinylation of 

cyclic alkenes was explored. Procedure A's major limitation was the tendency to generate 

a large amount of homoallylic side product. Procedure B was effective in providing only 

the desired bicyclic 1,4-diene in good to excellent yields. Procedure C proved to be 

problematical as it tends to produce mixtures of many unidentifiable organic products. 

The limitations of both procedures A and B appear to be their incompatibility with dienyl 

iodides containing an allylic ester. 
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